92. Kupfer(II)-chlorid-katalysierte 'Carben-Dimerisierung' von 1-Halogeno-1-lithiocyclopropanen: Ein einfacher Zugang zu Bi(cyclopropylidenen)¹)

von Thomas Loosli²), Markus Borer³), Iga Kulakowska³), Andrea Minger³) und Markus Neuenschwander*

Institut für Organische Chemie der Universität Bern, Freiestrasse 3, CH-3012 Bern

und Peter Engel

Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern

Herrn Prof. Dr. Richard Neidlein zum 65. Geburtstag gewidmet

(4.IV.95)

Copper(II)-Chloride Catalyzed 'Carbene Dimerization' of 1-Halogeno-1-lithiocyclopropanes: A Simple Access to Bi(cyclopropylidenes)

A series of 13 bi(cyclopropylidenes) 11 are prepared in a simple one-pot reaction by halogeno-lithio exchange between 1,1-dibromocyclopropanes 1a-n and BuLi, in most cases at -95° , to give 1-bromo-1-lithiocyclopropanes 2a-n, followed by treatment with CuCl₂ at low temperature and a simple workup at room temperature (*Scheme 3c* and *Table 1*). The yields of bi(cyclopropylidenes) 11 strongly depend on reaction parameters, as explicitly shown for the conversion $1f \rightarrow \rightarrow 11f$ (*Tables 2-8*). Mixed couplings between two different carbenoids are possible (*Scheme 4*), while diastereoselectivity of the active transition-metal complex seems to be low. The structures of bi(cyclopropylidenes) 11 are confirmed by spectroscopic data as well as by X-ray analysis of an isolated crystalline diastereoisomer of 11k (*Fig. 1*).

1. Einleitung. – Cyclopropyl-Carbenoide **2** [6] sind attraktive Synthesebausteine: Sie lassen sich aus 1,1-Dibromocyclopropanen **1** in THF bei *ca.* –100° durch Halogeno-Lithio-Austausch generieren [7] (*Schema 1*), wobei meist Diastereoisomerengemische **2** anfallen⁴), und durch Reaktion mit Elektrophilen, z. B. durch Methylierung [9] [10] oder Carboxylierung [11], abfangen. Bereits oberhalb von *ca.* –80° tritt α -Elimination **2** \rightarrow **3** ein, wobei letztlich Carbene **4** entstehen. Sowohl **3** wie **4** reagieren mit Nucleophilen,

¹) 14. Mitt. über Kupplungsreaktionen, 13. Mitt.: [1].

²) Teil der Dissertation [2].

³) Teil der Diplomarbeiten [3-5].

⁴) Es gibt Hinweise darauf, dass die beiden Diastereoisomere von 2 konfigurationsstabil sind, jedoch in Gegenwart des Edukts 1 äquilibrieren [8].

gehen C,H-Insertionen ein und können sich zu Allenen umlagern $[6]^{5}$), wobei diese Ringöffnung beim Erwärmen von Lösungen monocyclischer Carbenoide 2 oft dominiert [13]. Dieses vielseitige reaktive Verhalten der Spezies 2–4, die beim Aufwärmen der Reaktionslösungen durchlaufen werden, führt häufig zu sehr komplexen Produktgemischen und beeinträchtigt eine einfache synthetisch-präparative Anwendbarkeit der Cyclopropyl-Carbenoide 2.

In der Regel reagieren Cyclopropyl-Carbenoide in Et₂O unter α -Elimination mit anschliessender Ringöffnung zum entsprechenden Allen [14]. Falls diese Umlagerung zu gespannten Verbindungen führt, können stattdessen C,H-Insertionen und gelegentlich 'Carben-Dimerisierungen' ablaufen. Dementsprechend sind ausgehend von bicyclischen 1,1-Dihalogenocyclopropanen einige 'Carben-Dimere' bekannt geworden [14–18] (*Schema 2*), welche wahrscheinlich über Carbene 4 entstehen. Nach *Schema 2a* fallen ausserdem in erheblichem Umfang C,H-Insertionsprodukte an [14], und die Produktverteilung ist stark temperaturabhängig.

Wir beschäftigten uns vor einigen Jahren mit der oxidativen Kupplung von 'Hückel-Anionen' wie Cyclopentadienid [19] (Schema 3a) und zeigten, dass dieses Verfahren einen direkten Zugang zu Fulvalenen eröffnet [20]: Durch Cu^{II}-induzierte Kupplung von Cyclopentadienid (5) entsteht fast quantitativ das Dihydrofulvalen 6, nach zweifacher Deprotonierung (\rightarrow 7) und erneutem Umsatz mit CuCl₂ gewinnt man in ca. 70% Ausbeute das sehr reaktive Pentafulvalen 8 [20]. Ein analoger Plan bietet sich zur einfachen Synthese neuer funktionalisierter Bi(cyclopropylidene) (= Cyclopropylidencyclopropane) an⁶)

⁵⁾ Weitere Übersichten: [12].

⁶) Das unsubstituierte Bi(cyclopropyliden) ist kürzlich ausgehend von Cyclopropancarbonsäure-methylester in drei Stufen in hoher Ausbeute zugänglich geworden [21].

(Schema 3b): Die Cu^{II}-induzierte oxidative Kupplung von Cyclopropyl-Carbenoiden 2 könnte zu substituierten 1,1'-Dihalogeno-1,1'-bi(cyclopropylen) 9 führen, und nach einem Halogeno-Lithio-Austausch (\rightarrow 10) sowie einer anschliessenden LiX-Elimination würden die anvisierten Bi(cyclopropylidene) 11 zugänglich⁷). Verbindungen des Typs 11 mit potentiellen Abgangsgruppen R kommen ihrerseits als Edukte zur Synthese von Triafulvalen ((Cycloprop-2-en-1-yliden)cyclopropenen) in Frage.

Erste Versuche zur Realisierung dieses Planes zeigten, dass bei der Umsetzung von 1,1-Dibromo-2-(phenylthio)cyclopropan (1, R = PhS) mit BuLi und CuCl₂ in THF oder Et₂O bei -95° überraschenderweise nicht die erwarteten 1,1'-Dibromo-2,2'-bis(phenylthio)-1,1'-bi(cyclopropyle) 9 (R = PhS) entstehen. Als Hauptprodukt wird vielmehr ein Diastereoisomerengemisch der 2,2'-Bis(phenylthio)-1,1'-bi(cyclopropylidene) 11 (R = PhS) gebildet, welches nach einfacher Aufarbeitung in *ca.* 40% Ausbeute isoliert werden kann [3] [22]. Dieser überraschend direkte synthetische Zugang zu substituierten Bi(cyclopropylidene) 11 veranlasste uns, die präparative Anwendungsbreite der CuCl₂-induzierten 'Carben-Dimerisierung' von Cyclopropyl-Carbenoiden (1 \rightarrow 2 \rightarrow 11) zu untersuchen.

⁷) Modellversuche an dem in geringer Ausbeute gewonnenen 1,1'-Dibromo-2,2'-diphenyl-1,1'-bi(cyclopropyl) 9 (X = Br, R = Ph) lehrten, dass die Sequenz 9 \rightarrow 10 \rightarrow 11 realisiert werden kann [5].

2. Präparative Anwendungsbreite der Reaktion $1 \rightarrow 2 \rightarrow 11$. – 2.1. Resultate. Die 1,1-Dibromocyclopropane 1 setzen sich mit BuLi bei -95° sehr leicht im Sinne eines Halogeno-Lithio-Austausches $1 \rightarrow 2$ um. Die dabei gebildeten 1-Bromo-1-lithiocyclopropane 2 können grundsätzlich durch Methylierung nachgewiesen werden⁸), lassen sich andererseits bereits bei -95° in Gegenwart katalytischer Mengen CuCl₂ zu den Zielverbindungen 11 umsetzen (*Schema 3c*). Somit sind Bi(cyclopropylidene) 11 aus 1,1-Dibromocyclopropanen unter sehr schonenden Bedingungen in einfacher Eintopfreaktion zugänglich.

Trotz schonender Arbeitsweise zeigen GC-Untersuchungen⁹), dass bei der Tieftemperatur-Umsetzung von 1-Bromo-1-lithiocyclopropanen 2 mit CuCl₂ recht komplexe Produktgemische anfallen¹⁰), dass sich jedoch die Ansätze meist auf hohe Ausbeuten an 'Carben-Dimeren' 11 optimieren lassen (vgl. unten). Da die meisten Nebenprodukte deutlich unpolarer oder leichtflüchtiger sind als die Hauptprodukte 11, ist eine einfache chromatographische und destillative Anreicherung der Bi(cyclopropylidene) 11 möglich. Die 'Carben-Dimere' 11 fallen normalerweise als Stereoisomeren-Gemische an, wobei sich im GC meist alle möglichen Diastereoisomere nachweisen lassen. Eine Trennung der Isomerengemische 11 ist meist schwierig, sie ist in einzelnen Fällen durch präparative GC oder fraktionierte Kristallisation gelungen (s. *Exper. Teil*).

Die präparativen Ausbeuten der 'Carben-Dimere' 11 sind extrem stark von den Reaktionsbedingungen abhängig (vgl. unten), so dass sich in jedem Fall eine Optimierung der Reaktion $1 \rightarrow \rightarrow 11$ lohnt. Im allgemeinen erhält man nahezu optimale Ausbeuten, wenn eine 0,3M THF-Lösung des 1,1-Dibromocyclopropans 1 (vor oder nach der Umsetzung mit BuLi, s. unten) bei -95° mit 0,1 mol-equiv. (bez. 1) CuCl₂ versetzt, 1 h bei -95° gerührt, auf Raumtemperatur erwärmt und aufgearbeitet wird. Die Produktgemische werden meist durch 'flash'-Chromatographie an Kieselgel von Nebenprodukten getrennt.

2.2. Einfluss der Reaktionsparameter. Verschiedene Parameter haben einen massgeblichen Einfluss auf den präparativen Erfolg der Sequenz $1 \rightarrow \rightarrow 11$: Die optimale Reaktionstemperatur wird nach unten durch die Bildungsgeschwindigkeit $1 \rightarrow 2$ und nach oben durch die Zerfallsgeschwindigkeit der Carbenoide 2 bestimmt und liegt meist in einem engen Intervall um -95°. Diese Temperatur reicht bei einer Reaktionszeit von ca. 1 h in der Regel für die CuCl₂-katalysierte Umsetzung $2 \rightarrow 11$ aus. Cyclopropyl-Carbenoide 2 werden meist in THF oder Et₂O hergestellt, jedoch durch THF wesentlich besser stabilisiert als durch Et₂O [7]. Dementsprechend ist die Zerfallsgeschwindigkeit der Carbenoide 2 in Et₂O deutlich grösser und die Ausbeute an 11 meist deutlich kleiner. Demnach ist THF das Lösungsmittel der Wahl. Ein Wechsel von THF zu Et₂O ist nur bei reaktionsträgen stabilisierten Carbenoiden zu empfehlen. Optimale Ausbeuten an 11 werden in allen untersuchten Fällen bei hohen Edukt-Konzentrationen (ca. 0,3M von 1) erzielt. CuCl₂ ist bereits in katalytischer Menge aktiv! Bewährt haben sich 0,05-0,1 mol-equiv. CuCl₂ (bez. 1). Ohne CuCl₂ werden, von Ausnahmen abgesehen, meist nur Spuren von 'Carben-

⁸) Bei Umsetzung einer Lösung von 1,1-Dibromo-2-phenylcyclopropan und MeI in THF bei -95° mit BuLi werden nach 15 min Reaktionszeit im ¹H-NMR 92% cis/trans-Gemisch der 1-Bromo-1-methyl-2-phenylcyclopropane nachgewiesen [5].

⁹) Beispiel eines Rohprodukt-GC's, vgl. [22].

¹⁰) Lässt man die bei -95° erhaltenen Produktgemische vor der Aufarbeitung auf Raumtemperatur aufwärmen, so werden neben 'Carben-Dimeren' 11 und protonierten Cyclopropanen auch Folgeprodukte von 3 und 4, insbesondere Insertionsprodukte, beobachtet.

Dimeren' 11 beobachtet, welche auf die beim Erwärmen gebildeten Carbene 4 zurückzuführen sind. Die Ausbeuten an 11 können auch durch den Zeitpunkt der CuCl₂-Zugabe beeinflusst werden. Bei 'kinetischer Kontrolle'¹¹) werden oft höhere Ausbeuten erzielt als bei 'thermodynamischer Kontrolle'¹¹); jedoch gibt es Ausnahmen, so dass von Fall zu Fall entschieden werden muss, welche Reaktionsführung zur Anwendung kommen soll.

2.3. Anwendungsbreite der Reaktion $1 \rightarrow \rightarrow 11$. Nach Tab. 1¹¹) lassen sich zahlreiche substituierte 1,1-Dibromocyclopropane 1 in die entsprechenden Bi(cyclopropylidene) 11 umsetzen (Schema 3c). Die präparativen Ausbeuten¹²) schwanken je nach Substituenten in einem recht grossen Bereich: Für die 2-Benzyl-, 2,2-Dialkyl- und cis-2,3-Dialkyl-Derivate 1a-d sind die Ausbeuten ausgezeichnet und liegen um 80%, sie fallen bei sterischer Hinderung, durch Me-Gruppen (11e: 30%), deutlich ab. Ebenfalls gute Ausbeuten (im Mittel ca. 60%) erhält man bei Umsetzung der 2-Phenyl-, 2,2-Diphenyl- und 2-Methyl-2phenyl-Derivate 1f-h. Deutlich geringere Ausbeuten werden mit heteroatom-substituierten Cyclopropanen 1 erzielt, insbesondere mit den Alkoxy-Derivaten 1i und 1k (ca. 25%), aber auch mit dem Phenylthio-Derivat 1m (ca. 20%) in THF-Lösung [3]¹³). Sogar

Edukt	R ¹	R ²	R ³	R ⁴	Solvens ^a)	Methode ^b)	Produkt ^c)	Ausbeute [%] ^d)
1a	PhCH ₂	Н	H	H	THF	A	11a	87
b	Н	-(CH ₂)	4	Н	THF	В	b	87
c	Н	Me	Et	н	THF	A	с	65
d	-(CH ₂)	4	н	н	THF	A	d	85
e	Me	Me	Me	Me	THF	В	e	30
f	Ph	Н	Н	н	THF	A	f	50
g	Н	Me	Ph	Н	THF	A	g	75
h	н	Ph	Ph	н	THF	В	h	60 ^e)
i	BuO	н	н	н	THF	В	i	21
k	-O-(CH	$I_{2})_{3}-$	Н	н	THF	В	k	26
1	PhO	Н	н	н	THF	A	1	56
m	PhS	Н	H	н	Et ₂ O	A	m	44
n	9,10-Dihy anthracen	dro- 1-9,10-diyl	Н	Н	THF	B^{f})	n	25

Tab. 1. Synthese von Bi(cyclopropylidenen) 11a-n aus 1,1-Dibromocyclopropanen 1a-n¹²)

^a) Reaktionstemperatur -95°; Aufarbeitung nach Aufwärmen bei Raumtemperatur. ^b) A ='kinetische Kontrolle' (Zugabe von CuCl₂ vor dem Umsatz von 1 mit BuLi); B ='thermodynamische Kontrolle' (Zugabe von CuCl₂ nach dem Umsatz von 1 mit BuLi und nach 1 h Rühren bei -95°)¹¹). ^c) Mit Ausnahme von 11e und 11n werden Diastereoisomerengemische erhalten. ^d) Präparative Ausbeute von optimierten Ansätzen nach Chromatographie bzw. nach Kristallisation (11m, 11n). ^e) Ausbeute nach NMR-Analyse des Rohprodukts. ^f) Katalysator: FeCl₃.

¹¹) Bei 'kinetischer Kontrolle' wird CuCl₂ (0,1 mol-equiv.) bei -95° der 0,3M THF-Lösung von 1 zugesetzt und erst dann allmählich BuLi (1 mol-equiv.) zugetropft. Dabei wird das aus 1 bevorzugt gebildete Carbenoid 2 sogleich mit CuCl₂ umgesetzt. Bei 'thermodynamischer Kontrolle' wird 1 zunächst bei -95° mit BuLi (1 mol-equiv.) umgesetzt, sodann 2 zur *cis/trans*-Äquilibrierung 1 h bei -95° gerührt⁴) und erst dann CuCl₂ (0,1 mol-equiv.) zugegeben.

¹²) Die Ausbeuten sind extrem von den Reaktionsbedingungen abhängig. Deshalb dürfte es schwierig sein, die Werte von *Tub. 1* exakt zu reproduzieren.

¹³) Diese Ausbeuteabnahme könnte mit einer Reaktivitätsabnahme der heteroatom-substituierten 1-Bromo-1lithiocyclopropane infolge einer ($X \rightarrow Li$)-Komplexierung im Zusammenhang stehen, vgl. Diskussion.

das sterisch sehr anspruchsvolle Dihydroanthracen-Derivat 1n (*Schema 3c*), das durch Dibromocarben-Addition an Dibenzobarrelen gewonnen wird [23], lässt sich durch CuCl₂-katalysierte 'Carben-Dimerisierung' ins Bi(cyclopropyliden) 11n überführen.

Die Beispiele von Tab. 1 zeigen, dass die CuCl₂-katalysierte 'Carben-Dimerisierung' von Cyclopropyl-Carbenoiden 2 zu 11 eine Reaktion von beachtlicher Anwendungsbreite darstellt. Ihr Wert wird dadurch erhöht, dass substituierte 1,1-Dibromocyclopropane 1 durch Dibromocarben-Addition an Olefine sehr leicht zugänglich sind [24–26].

3. Variation der Reaktionsbedingungen¹⁴). – 3.1. Vorbemerkungen. Der Erfolg der CuCl₂-katalysierten 'Carben-Dimerisierung' $2 \rightarrow 11$ hängt wesentlich von der Wahl geeigneter Reaktionsbedingungen ab. Dies soll im folgenden am Beispiel der Umsetzung von 1,1-Dibromo-2-phenylcyclopropan (1f) zu 11f (R¹ = Ph, R² = R³ = R⁴ = H) [5] gezeigt werden¹⁴). Durch Vergleich mit weiteren Optimierungen [2] sollen die am Beispiel 1f \rightarrow 11f aufgezeigten Trends in einen grösseren Zusammenhang gestellt werden, sodass sowohl allgemeine Regeln wie auch Ausnahmen erkennbar werden.

Bei den unter verschiedenen Bedingungen in THF durchgeführten Umsetzungen von **If** wurden mittels GC/MS (bzw. durch Isolierung und Strukturaufklärung) folgende Verbindungen in variablen Mengen nachgewiesen¹⁵): Bei praktisch allen Versuchen war das Edukt **1f** nach Reaktionsabbruch in kleinen Mengen vorhanden, was insofern wichtig ist, als unter diesen Bedingungen die beiden stereoisomeren Carbenoide **2** bei längeren Reaktionszeiten äquilibrieren können⁴). Dementsprechend wurden nach Protonierung von **2** auch *cis/trans*-Gemische **12** isoliert. Das recht überraschende 1-Butyl-2-phenylcyclopropan (*cis/trans*-**13f**) könnte beim Aufwärmen der Reaktionslösungen durch Reaktion des elektrophilen Carbenoids **3** (vgl. *Schema 1*) mit BuLi und Protonierung entstehen. Ebenso dürfte **14f** durch Insertion von **3** oder **4** in eine (C-H)-Bindung des Lösungsmittels gebildet werden [6]. Von der Zielverbindung **11f** werden alle vier Diastereoisomere gebildet, und **9f** entspricht dem ursprünglich erwarteten Produkt der oxidativen Kupplung (vgl. *Schema 3b* und *Kap.1*). Von **9f** lassen sich alle sechs Diastereoisomere nachweisen, wobei eines stark überwiegt. Es sei darauf hingewiesen, dass die Umsetzung **1f** \rightarrow **11f** bisher die einzige Reaktion des Typs **1** \rightarrow **11** ist, bei welcher

¹⁴) Bei der Variation der Reaktionsbedingungen am Beispiel 1f → → 11f wurde stets mit präparativen Mengen, meist mit 200 mg 1f, gearbeitet (vgl. *Exper. Teil*). Das rohe Produkt-Gemisch wurde mittels GC analysiert und die Ausbeute an 11f durch Vergleich der Peakfläche von 11f mit der Gesamtfläche aller Peaks abgeschätzt. Da zur Optimierung Relativwerte genügten und ohnehin nicht alle GC-Komponenten rein zur Verfügung standen, wurden die GC-Peaks nicht geeicht. Die Ausbeuten der *Tab. 2-8* stellen deshalb Richtwerte dar und sollen nicht überbewertet werden.

¹⁵) GC-Bedingungen, vgl. Exper. Teil und [22].

unter gewissen Bedingungen das Kupplungsprodukt 9 in namhaften Mengen (maximal 14% laut GC, vgl. unten) gebildet wird¹⁶).

Angesichts der Tatsache, dass sich Cyclopropyl-Carbenoide 2 beim Aufwärmen oft zu Allenen umlagern [6], scheint der Befund zu überraschen, dass höchstens Spuren von Phenylallen gefunden werden. Dies ist auf die stabilisierende Wirkung von THF auf Cyclopropyl-Carbenoide 2 zurückzuführen: Erwärmt man eine THF-Lösung von 2f vor dem Reaktionsabbruch mit H₂O auf 20°, so wird nach der Aufarbeitung mit hoher Ausbeute *trans*-1-Bromo-2-phenylcyclopropan (*trans*-12f) isoliert. Bei Durchführung desselben Versuchs im weniger stabilisierenden Solvens Et₂O wird dagegen als Hauptprodukt Phenylallen isoliert [13].

3.2. Einfluss der Reaktionstemperatur (Tab. 2). Bereits Methylierungsversuche zeigen, dass die Bildungsgeschwindigkeit der Carbenoide **2f** aus **1f** bei -95° ausreichend gross ist, während die Zerfallsgeschwindigkeit noch klein ist. Tab. 2 lehrt zusätzlich, dass eine Temperatur von -95° auch für die nachfolgende Umsetzung der Carbenoide **2f** mit CuCl₂ zu **11f** optimal ist. Vor allem fällt auf, dass die Ausbeute an 'Carben-Dimeren' **11f** bereits bei -78° markant zurückgeht. Der leichte Rückgang an **11f** beim Wechsel von -95 auf -105° darf nicht überbewertet werden, da THF durch das Lösungsmittelgemisch THF/Et₂O/Pentan 4:1:1 ersetzt werden musste.

Tab. 2. Einfluss der Reaktionstemperatur auf die Produktausbeute¹⁴) bei Umsetzung von 1f (ca. 0,3m in THF) mit BuLi und $CuCl_2^a$)

Temperatur [°C]	11f [%]	9f [%]	12f [%]	lf [%]
-78 ^b)	12		46	4
-95 ^b)	69	1	7	-
-105°)	50	1	30	4

a) Zusatz von 0,1 mol-equiv. CuCl₂ bez. 1f unter 'kinetischer Kontrolle'¹¹); Vorschrift, vgl. Exper. Teil.

^b) Lösungsmittel THF.

^c) Lösungsmittelgemisch THF/Et₂O/Pentan 4:1:1 ('*Trapp*-Mischung' [27]), da THF bei -100° auszufrieren beginnt.

3.3. Einfluss der Reaktionszeit (Tab. 3). Wie erwartet nimmt die Ausbeute an 'Carben-Dimer' **11f** mit zunehmender Reaktionszeit zu und erreicht nach ca. 60 min ein Maximum, während das Edukt **1f** praktisch verschwunden ist. Obwohl bei allen Versuchen der Tab. 3 äquimolare Mengen an CuCl₂ (bez. **1f**) eingesetzt wurden, bleiben die Ausbeuten

Tab. 3. Einfluss der Reaktionszeit auf die Produktausbeute¹⁴) bei Umsetzung von 1f(ca. 0.3M in THF)mit BuLi und CuCl₂ bei -95^{ca})

Reaktionszeit [min]	11f [%]	9f [%]	1f[%]
10	11	< 1	70
30	32	2	38
60	50	8	4
90	43	14	6

¹) Zusatz von 1,0 mol-equiv. CuCl₂ (bez. 1f) unter 'kinetischer Kontrolle'¹¹); Vorschrift vgl. Exper. Teil.

¹⁶) Über die Isolierung und Strukturaufklärung von Kupplungsprodukten des Typs 9 wird später berichtet werden.

am Kupplungsprodukt 9f vorerst sehr klein und scheinen erst bei sehr langen Reaktionszeiten auf Kosten von 11f zuzunehmen (vgl. *Kap. 4*)¹⁷). Auch bei Zugabe von nur 0,1 mol-equiv. CuCl₂ (bez. 1f) ist eine Reaktionszeit von 1 h ausreichend, was auch für alle Versuche der *Tab. 1* zutrifft.

3.4. Einfluss des Lösungsmittels (Tab. 4). Beim Wechsel von THF zu Et₂O sinkt die Ausbeute an **11f** dramatisch von 69 auf 16% ab, wobei gleichzeitig der Anteil an Protonierungsprodukt **12f** markant zunimmt. Ein analoges Verhalten zeigen fast alle 1,1-Dibromocyclopropane 1 der Tab. 1: bei den Umsetzungen der Cyclopropane **1b**, g, k fallen die Ausbeuten an den 'Carben-Dimeren' **11b**, g, k beim Wechsel von THF zu Et₂O auf ca. 20–30% der Werte von Tab. 1. Die einzige bisher beobachtete Ausnahme ist 1,1-Dibromo-2-(phenylthio)cyclopropan (**1m**), wo der 'Carben-Dimer'-Anteil an **11m** beim Ersatz von THF durch Et₂O unter sonst gleichen Bedingungen von 25% auf 41% zunimmt. Dies dürfte mit einer intramolekularen Stabilisierung des Carbenoids **2m** im Zusammenhang stehen (vgl. Kap. 4).

Tab. 4. Einfluss des Lösungsmittels auf die Produktausbeute¹⁴) bei Umsetzung von lf (ca. 0,3м) mit BuLi und CuCl₂ bei -95° ^a)

 Solvens	11f[%]	9f [%]	12f [%]	
 THF	69	1	7	
Et ₂ O ^b)	16	-	57	

^a) Zusatz von 0,1 mol-equiv, CuCl₂ (bzw. 1f) unter 'kinetischer Kontrolle'¹¹); Vorschrift, vgl. Exper. Teil.

b) Zusätzlich wird Phenylallen gebildet, das jedoch bei der Aufarbeitung teilweise verlorengeht.

3.5. Einfluss der 'CuCl₂-Konzentration'¹⁸) (Tab. 5). Tab. 5 zeigt eindrücklich, dass zur Auslösung der 'Carben-Dimerisierung' $2f \rightarrow 11f$ nicht äquimolare Mengen CuCl₂ notwendig sind. Bei präparativen Ansätzen werden mit 0,05–0,1 mol-equiv. CuCl₂ (bez. 1) sogar etwas bessere Ausbeuten erzielt als mit äquimolaren Mengen. Dies ist bei der Umsetzung $1f \rightarrow \rightarrow 11f$ vor allem auf eine (bei langen Reaktionszeiten beobachtete) Zunahme des Kupplungsprodukts 9f zurückzuführen. Aber auch bei der Reaktion $1b \rightarrow \rightarrow 11b$, wo kein Kupplungsprodukt 9b entsteht, sinkt die NMR-spektroskopisch ermittelte Ausbeute an 11b bei Zunahme der CuCl₂-Menge (0,05, 0,5 bzw. 1 mol-equiv. bez. 1b) leicht ab (92, 91 bzw. 81% 11b).

Tab. 5. Einfluss der CuCl₂-Konzentration auf die Produktausbeute¹⁴) bei Umsetzung von 1f (ca. 0,3м in THF) mit BuLi und CuCl₂ bei -95° ^a)

[CuCl ₂] ^b)	Methode ^c)	11f[%]	9f [%]
0		-	_
0,1	A	69	1
1	A	51	8

¹⁷) Die Reaktion $1f \rightarrow 11f$ ist die einzige Reaktion von *Tab. 1*, bei welcher bisher das Kupplungsprodukt **9f** im Prozent-Bereich nachgewiesen wurde.

¹⁸) Die Werte der Tab. 5 entsprechen der zugesetzten Menge CuCl₂ bzw. 1f. Man beachte, dass die Löslichkeit von CuCl₂ in THF bei -95° recht gering ist. Sogar bei Zugabe von 10 mg CuCl₂ zu 5,5 ml abs. THF entsteht bei -95° eine braune Suspension! Lässt man ca. 0,3M THF-Lösungen des Carbenoids **2f** ohne Zugabe von CuCl₂ vor dem Aufarbeiten auf Raumtemperatur erwärmen, so kann kein Produkt **11f** isoliert werden. Gleiche Ergebnisse werden bei 'Leerversuchen' mit den Carbenoiden **1g**,**k**,**l** erzielt. Sie belegen, dass die Verbindungen **11f**,**g**,**k**,**l** nicht durch Rekombination freier Carbene 4, sondern durch CuCl₂-katalysierte Umsetzung der Carbenoide 2 gebildet worden sind. Andererseits ist die Bildung von 'Carben-Dimeren' bei 'Leerversuchen' nicht auszuschliessen, wenn beim Aufwärmen der Reaktionslösungen Carbene 4 durchlaufen werden (vgl. Kap. 1 und Schema 2). Ohne Katalysator-Zusatz werden ausgehend von **1b** (17% **11b**) und **1d** (5% **11d**) Dimere beobachtet, die offensichtlich beim Erwärmen der Reaktionslösungen durch Rekombination von Carbenen **4** gebildet worden sind.

3.6. Einfluss der Eduktkonzentration (Tab.6). Die Ausbeuten an 'Carben-Dimer' 11f sind in einem gewissen Konzentrationsbereich sehr stark von der Eduktkonzentration abhängig: Bei Verdoppelung der Konzentration an 1f von 0,07 auf 0,14m steigt die Dimer-Ausbeute von 6 auf 65%, und bei ca. 0,3m Lösungen erreicht die Ausbeute an 11f ein Maximum. Einen noch extremeren Ausbeuteverlauf zeigt (das vermutlich reaktionsträgere) Carbenoid 2m [22]: Bei Zunahme der Konzentration an 1m von 0,16 auf 0,32m steigt die GC-Ausbeute an 11m von 0,1 auf 30% an. Die Werte der Tab.6 zeigen die Bedeutung einer Optimierung der Reaktionen $1 \rightarrow 2 \rightarrow 11$ auf. Für 'Standard-Ansätze' empfiehlt sich eine Eduktkonzentration von ca. 0,3M.

Tab. 6. Einfluss der Eduktkonzentration auf die Produktausbeute ¹⁴) bei Umsetzung von 1f (in THF) mit BuLi und CuCl ₂ bei –95° ^a)					
Konzentration von 1f	11f [%]	12f [%]	1f[%]		

Konzentration von 1f	11f [%]	12f [%]	1f[%]
0,036м		31	57
0,07м	6	54	12
0,14м	65	17	. –
0,27м	69	7	-

^a) Zusatz von 0,1 mol-equiv. CuCl₂ (bez. **1f**) unter 'kinetischer Kontrolle'¹¹), Reaktionsdauer bei -95° 60 min; Vorschrift, vgl. *Exper. Teil*.

3.7. Einfluss der Reaktionsführung ('kinetische' bzw. 'thermodynamische Kontrolle'¹¹); Tab. 7). Auch die Art der Reaktionsführung, und insbesondere der Zeitpunkt der CuCl₂-Zugabe, kann die Produktausbeute beeinflussen. Im Falle der Umsetzung $1f \rightarrow 2f \rightarrow 11f$ sind die Ausbeuten an 'Carben-Dimer' 11f bei 'kinetischer Kontrolle'¹¹) deutlich höher als bei 'thermodynamischer Kontrolle'¹¹), und dasselbe gilt für die analogen Reaktionen der

Tab. 7. Einfluss von 'kinetischer' bzw. 'thermodynamischer Kontrolle'¹¹) auf die Produktausbeute¹⁴) bei Umsetzung von 1f (ca. 0,3м in THF) mit BuLi und CuCl₂ bei -95°^a)

		-		
 Methode ^b)	[CuCl ₂] ^c)	11f [%]	9f [%]	
 A	0,1	69	1	
A	1	51	8	
В	0,1	21	1	
В	1	21	10	

^a) Vorschriften, vgl. *Exper.Teil.* ^b) A = 'kinetische Kontrolle'; B = 'thermodynamische Kontrolle'¹¹). ^c) Zugesetzte mol-equiv. CuCl₂ (bzw. 1f).

1,1-Dibromocyclopropane 1a, 1, m. Andererseits sind auch Fälle bekannt, wo die 'thermodynamische Reaktionsführung' bessere Resultate erbringt (1e, h, i, m), während sich in andern Fällen beide Methoden nur wenig unterscheiden (1c, d). Demnach lassen sich keine allgemein gültigen Regeln aufstellen.

3.8. Einfluss des Katalysators (Tab. 8). Alle bisher durchgeführten Versuche (Tab. 1) zeigen, dass die CuCl₂-induzierte Bildung von Bi(cyclopropylidenen) **11** im allgemeinen mit hoher Ausbeute verläuft. Dies ist auch für die Umsetzung des Carbenoids $2f \rightarrow 11f$ der Fall. Allerdings zeigt Tab. 8, dass auch andere Cu^{II}-Salze wie CuBr₂ und Cu^I-Salze wirksam sind, wenn auch meist schlechtere Ausbeuten erzielt werden. Dies ist für weitere Umsetzungen (z. B. die Reaktionen von **1b**, c, e, n) belegt worden [2]. Die 1,1-Dibromocyclopropane **1d**, h, m bzw. deren bei -95° erzeugten Carbenoide **2** sind auch mit FeCl₃ als Katalysator umgesetzt worden, doch liegen die Ausbeuten deutlich niedriger (ca. 60-70% der mit CuCl₂ erreichten Werte). Man beachte, dass Dreiring-Substituenten R mit Heteroatomen das Komplexierungsverhalten der Carbenoide **2** beeinflussen können. So erhält man bei der Umsetzung von 1-Bromo-1-lithio-2-(phenylthio)cyclopropan (**2m**) mit Katalysatoren wie AgBF₄ und CuCl, welche in andern Fällen wirksam sind, kein 'Carben-Dimer' **11m**. Insgesamt hat sich CuCl₂¹⁹) als Katalysator weitaus am besten bewährt, nimmt jedoch keine Sonderstellung ein.

Katalysator	11f [%]	9f [%]	12f [%]
CuCl ₂	69	1	7
CuBr ₂	60	2	26
CuF_2	_	-	69
CuCl	7	1	38
CuBr	46	-	50
Cul	37	-	31

Tab.8. Einfluss des Katalysators auf die Produktausbeute¹⁴) bei Umsetzung von 1f(ca. 0,3M in THF) mit BuLi und Cu^{II} bzw. Cu^I-Salzen bei $-95^{\circ a}$)

Zusammenfassend zeigen die am Beispiel der Umsetzung $1f \rightarrow 2f \rightarrow 11f$ beschriebenen Experimente, dass sich die CuCl₂-induzierte 'Carben-Dimerisierung' durch Variation der Reaktionsparameter optimieren lässt. Hohe Ausbeuten an 'Carben-Dimeren' 11 werden allgemein beim einstündigen Umsatz von *ca*. 0,3M THF-Lösungen der Carbenoide 2 mit 0,05–0,1 mol-equiv. CuCl₂ bei -95° erzielt. Meist werden bei 'kinetischer Kontrolle'¹¹) eher bessere Ergebnisse erreicht als bei 'thermodynamischer Kontrolle'¹¹). Die 'Carben-Dimerisierung' $2 \rightarrow 11$ wird auch durch andere Übergangsmetallsalze wie CuBr oder FeCl₃ katalysiert, doch weist CuCl₂ bisher die grösste Anwendungsbreite auf und liefert die besten Ausbeuten an Dimer 11.

4. Diskussion. – In einfacher Eintopfreaktion lassen sich 1,1-Dibromocyclopropane 1 durch Halogeno-Lithio-Austausch ($\rightarrow 2$) und Behandlung mit Übergangsmetallsalzen wie CuCl₂ bei tiefer Temperatur (*ca.* -95°) zu Bi(cyclopropylidenen) 11 umsetzen. Die

¹⁹) Ähnlich gute Resultate sind auch für CuBr₂ zu erwarten. Im Verlaufe des katalytischen Kreisprozesses wird bei der Reaktion von Carbenoiden 2 mit CuCl₂ CuBr₂ gebildet! Man beachte jedoch, dass nach Tab. 8 CuF₂ bei Umsetzung von 2f völlig unwirksam ist!

präparativen Ausbeuten dieser 'Carben-Dimere' 11 sind extrem von den Reaktionsbedingungen abhängig: gute Resultate erzielt man bei hohen Eduktkonzentrationen, mit katalytischen Mengen an Kupplungssalz und in Tetrahydrofuran als Lösungsmittel. Die Ausbeuten der Umsetzung der untersuchten [unterschiedlich substituierten]],1-Dibromocyclopropane (*Tab. 1*) schwanken zwischen 25% (11n) und 87% (11a,b), mit einem Mittelwert über alle dreizehn Beispiele von *ca.* 55%. Die ursprünglich erwarteten Produkte 9 der oxidativen Kupplung werden nur in einem Fall (9f) als Nebenprodukte beobachtet; ihre Bildung wird durch lange Reaktionszeiten und (wie erwartet) hohe CuCl₂-Konzentrationen begünstigt. Die Methode zeichnet sich durch einfache Zugänglichkeit der Edukte, grosse Variationsbreite der Substituenten (*Tab. 1*), schonende Arbeitsweise und (trotz der häufigen Komplexität der Produktgemische) einfache Aufarbeitung aus.

Nach Schema 4 sind auch gemischte Kupplungen möglich: Beispielsweise erhält man bei Umsetzung der 1,1-Dibromocyclopropane 1b und 1d mit BuLi und CuCl₂ in THF bei -95° unter 'thermodynamischer Kontrolle'¹¹) sowohl die Produkte der 'Homokupplung' 11b und 11d (Stereoisomerengemische) wie auch das Enantiomerenpaar 11o im Verhältnis von 35:43:22 und mit einer Gesamtausbeute (GC) von 73%.

Die hier vorgestellte Synthese $1 \rightarrow 11$ ist unseres Wissens das erste Verfahren, welches eine breite Palette von Bi(cyclopropylidenen) 11 in einfacher Eintopfreaktion zugänglich macht, wenn man von den in einigen Fällen beobachteten 'Carben-Dimerisierungen' absieht, welche beim Aufwärmen der Lösungen von Cyclopropyl-Carbenoiden 2 mit mässigen Ausbeuten eintreten können [15–18] (vgl. Schema 2). In der Literatur sind einige gezielte Synthesen vereinzelter Bi(cyclopropylidene) beschrieben [21] [28–30]. So wurde 11e in vielstufigem Verfahren mit photochemischen Teilschriften aus schwerzugänglichen Edukten erhalten, wobei die Reinherstellung von 11e misslungen ist [28]. Auch der Grundkörper Bi(cyclopropyliden)²⁰) war bis vor kurzem nur in vielstufiger Synthese zugänglich, beispielsweise in neuen Stufen aus Cyclopropyl-methyl-keton [29], und nur die kürzlich publizierte Synthese des Grundkörpers aus Cyclopropancarbonsäure-methylester verläuft in drei Stufen mit hohen Ausbeuten [21]²⁰).

1154

²⁰) Wir haben bisher keine Versuche zur Synthese von Bi(cyclopropyliden) aus 1,1-Dibromocyclopropan unternommen.

Angesichts der mehrstufigen Reaktionsfolge $1 \rightarrow \rightarrow 11$, bei welcher nach dem Halogeno-Lithio-Austausch $1 \rightarrow 2$ auch reaktive Zwischenstufen des Typs 3 und 4 gebildet werden können, überrascht nicht, dass in vielen Fällen komplexe Produktgemische anfallen. Umsomehr sei daraf hingewiesen, dass die Diastereoisomerengemische der Bi(cyclopropylidene) 11 durch einfache chromatographische und/oder destillative Aufarbeitung gereinigt werden können.

Aufgrund der bisher vorliegenden Befunde ist die Diastereoselektivität des katalytisch aktiven Übergangsmetall-Komplexes recht klein. Im Normalfalle werden nämlich mittels GC alle denkbaren diastereoisomeren Bi(cyclopropylidene) 11 beobachtet, deren zumindest teilweise Trennung in einigen Fällen gelungen ist (11b, d, h-k, m, vgl. *Exper. Teil*), wobei eine sichere spektroskopische Unterscheidung der Stereoisomeren oft Schwierigkeiten bereitet. So werden bei der Umsetzung von 1,1-Dibromo-2-phenylcyclopropan (1f) mit BuLi und 0,1 mol-equiv. CuCl₂ in THF bei -95° vier diastereoisomere Bi(cyclopropylidene) 11f im GC-Mengenverhältnis von 16:22:36:26 gebildet, deren Strukturzuweisung nicht gelungen ist. Andererseits zeigt es sich, dass das Verhältnis der diastereoisomeren Produkte 11 durch Änderung der Reaktionsbedingungen (und insbesondere des Katalysators) beeinflusst werden kann: Beispielsweise erhält man bei der Umsetzung von 1,1-Dibromo-2,2-diphenylcyclopropan 1h mit BuLi und CuCl₂ bei -95° zwei Diastereoisomere 11hA und 11hB im Verhältnis von 76:24. Ersetzt man den Katalysator CuCl₂ durch FeCl₃, so entstehen die beiden Diastereoisomere praktisch im inversen Verhältnis von 29:71!

Somit könnte die geringe Diastereoselektivität des katalytisch aktiven Komplexes die Anwendungsbreite der 'Carben-Dimerisierung' $1 \rightarrow 11$ beeinträchtigen. Berücksichtigt man andererseits, dass uns Bi(cyclopropylidene) 11 vor allem als Synthesevorstufen des bis heute unbekannten Grundkörpers Triafulvalen 15 interessieren, so spielt die Anordnung der Substituenten in 11 überhaupt keine Rolle, falls sie sich nicht gegenseitig elektronisch beeinflussen. Ferner besteht die Hoffnung, ausgehend von 1,1-Dibromocyclopropanen des Typs 1p mit zwei sterisch anspruchsvollen Substituenten das energetisch (und sterisch) günstigste Bi(cyclopropyliden) 11p zu bevorzugen (*Schema 5*). Tatsächlich werden bei der CuCl₂-induzierten 'Carben-Dimerisierung' von 1p immer noch alle vier möglichen Diastereoisomere beobachtet, doch ist das in *Schema 5* formulierte Diastereoisomere 11p bereits das Hauptprodukt [31]. Versuche zur Umwandlung der Substituenten von 11p in gute Abgangsgruppen sind zur Zeit im Gang.

Zentrale Zwischenstufen bei der Umsetzung $1 \rightarrow \rightarrow 11$ sind die durch Halogeno-Lithio-Austausch aus 1,1-Dibromocyclopropanen 1 gebildeten Cyclopropyl-Carbenoide

Schema 5. Synthese einer attraktiven Triafulvalen-Vorstufe

2, welche schon früh von Köbrich postuliert [7], indirekt durch Methylierung wahrscheinlich gemacht [9] [10] und vor rund zehn Jahren von Seebach und Mitarbeitern durch Tieftemperatur-NMR-Messungen und ¹³C-Markierungen nachgewiesen worden sind [32]. Methylierungsversuche belegen auch, dass der Halogeno-Lithio-Austausch von 1,1-Dibromocyclopropanen mit BuLi $(1 \rightarrow 2)$ bei -95° schnell ist und mit hohen Ausbeuten verläuft: Wird 1,1-Dibromo-2-phenylcyclopropan 1f bei -95° mit BuLi umgesetzt und nach 15 min bei -95° mit einem Überschuss an MeI versetzt, so entsteht nach NMR-Untersuchungen das *cis/trans*-Gemisch der 1-Bromo-1-methyl-2-phenylcyclopropane in *ca.* 92% Ausbeute [5]. Rührt man das Reaktionsgemisch vor der Methylierung 1 h bei -78°, so sinkt die Ausbeute der Methylierungsprodukte bereits auf *ca.* 60% ab.

Ebenso verlaufen ausgehend von 1m und 1n sowohl der Halogeno-Lithio-Austausch $1 \rightarrow 2$ wie auch die Methylierung der Cyclopropyl-Carbenoide 2 mit sehr hohen Ausbeuten (*Schema 6*): Ausgehend von 1m wird mit 93% Ausbeute und stereoselektiv *trans*-1-

Bromo-1-methyl-2-(phenylthio)cyclopropan (16m) isoliert [22], obwohl der Halogeno-Lithio-Austausch $1m \rightarrow 2m$ unter Retention aus sterischen Gründen bevorzugt zu *cis*-2m führen müsste. Noch überraschender ist die quantitative und stereoselektive Bildung von 16n bei der Umsetzung von 1n mit BuLi/MeI: Selbst unter 'kinetischer Kontrolle' (Zugabe von BuLi zum Gemisch von 1n und MeI) tritt die Me-Gruppe exklusiv in die sterisch abgeschirmte *syn*-Stellung ein, obwohl auch hier der Bromo-Lithio-Austausch von 1n zu *cis*-2n führen müsste²¹). In beiden Fällen verläuft die *cis/trans*-Äquilibrierung der Cyclopropyl-Carbenoide 2 offensichtlich sehr schnell, sie wird möglicherweise durch vorhandenes Edukt 1 [8] oder durch BuBr katalysiert. Ferner liegen die Gleichgewichte *cis*- $2m \approx trans$ -2m und *cis*- $2n \approx trans$ -2n aufgrund der Komplexierung des Li-Atoms durch das einsame Elektronenpaar des S-Atoms bzw. durch das π -System des Aromaten weit auf der rechten Seite. Die Befunde zeigen eindrücklich, dass aus Methylierungsversuchen (bzw. aus dem Verhältnis *cis*-16/trans-16) nicht auf das unter 'kinetischer Kontrolle' vorliegende Verhältnis der Carbenoide *cis*-2/trans-2 geschlossen werden darf.

²¹) Dieses überraschende Resultat wurde durch eine Röntgen-Strukturanalyse abgesichert, obwohl die ¹H-NMR-Spektren klar zugunsten von 16n sprachen [33].

1157

Zweifellos ist das Reaktionsgeschehen der CuCl₂-induzierten 'Carben-Dimerisierung' von l-Bromo-1-lithiocyclopropanen $2 \rightarrow 11$ trotz der meist guten präparativen Ausbeuten der Bi(cyclopropylidene) 11 (vgl. *Tab. 1*) recht komplex. Eine Untersuchung des Reaktionsverlaufes wird sowohl durch die thermische Instabilität der Cyclopropyl-Carbenoide 2 und ihre erschwerte spektroskopische Beobachtung als auch durch die heterogene Reaktion in Gegenwart von CuCl₂ und die schon beim Halogeno-Lithio-Austausch $1 + BuLi \rightarrow 2 + BuBr$ eingeschleppten Verbindungen (BuBr) und Verunreinigungen erschwert. Wir präsentieren in *Schema 7* einen spekulativen Mechanismus, der den wichtigsten präparativen Befunden gerecht wird.

Schema 7. Spekulativer Mechanismus der CuCl₂-induzierten 'Carben-Dimerisierung' 2 → 11 (gezeichnet für R = H)

Wir nehmen an, dass 1-Bromo-1-lithiocyclopropane 2 vorzugsweise über das Halogeno-Atom am Cu²⁺ komplexiert werden, wobei Übergangsmetallkomplexe des Typs 17 (mit zusätzlicher Cl→Li-Komplexierung) eine wichtige Rolle spielen könnten. Da in solchen Komplexen 17 die Cyclopropan-Ringe vergleichsweise weit voneinander entfernt sind, dürften sich ausgehend von monosubstituierten Carbenoiden mit einem Rest R die Energien der vier diastereoisomeren Komplexe 17 nur wenig unterscheiden, was mit der relativ kleinen Diastereoselektivität der Reaktion übereinstimmt. Nach Abspaltung von 2 mol-equiv. LiCl wird das Carbenoid direkt am Cu-Atom koordiniert. Mit der Bildung des Carben-Komplexes 18 dürfte Spannung abgebaut werden, und durch Rekombination der beiden komplexierten Cyclopropyl-Carbene (vgl. 18) über eine Kante des quadratisch planaren Komplexes könnten die 'Carben-Dimere' 11 gebildet und gleichzeitig katalytisch aktives CuBr₂ freigesetzt werden. Dieser spekulative Reaktionsverlauf ist sowohl mit der katalytischen Wirkung von CuCl₂ (und CuBr₂), der geringen Diastereoselektivität der 'Carben-Dimerisierung' und dem grossen Einfluss der Carbenoid-Konzentration auf die Reaktionsgeschwindigkeit in Übereinstimmung.

5. Struktur der 'Carben-Dimere' 11. – 5.1. Röntgen-Strukturanalyse des Hauptisomers von 11k. Bei der Umsetzung von 7,7-Dibromo-2-oxabicyclo[4.1.0]heptan (1k) mit BuLi und CuCl₂ entstehen vier diastereoisomere Produkte 11k im approximativen Verhältnis von 3:10:4:3 (GC) und einer Gesamtausbeute von 26%. Das Hauptisomer lässt

sich durch fraktionierte Kristallisation aus Et_2O in *ca.* 15% Ausbeute isolieren. Für die *Röntgen*-Struktur wurde ein Kristallbruchstück von *ca.* $0.2 \times 0.5 \times 0.3$ mm präpariert.

Erste Röntgen-Aufnahmen mit einer Weissenberg-Kamera und CuK_a-Strahlung zeigten, dass die Kristalle monoklin sind mit der Raumgruppe $P2_1/c$. Die Bestimmung der Gitterparameter (a = 6,45(2), b = 15,83(4) und c = 11,34(4) Å) und die Intensitätsmessungen erfolgten mit einem Nonius-CAD-4-Diffraktometer und MoK_a-Strahlung bei Raumtemperatur. Die Zellparameter wurden nach der Methode der kleinsten Fehlerquadrate berechnet unter Berücksichtigung von 18 genau gemessenen Reflexen im Bereich $8^{\circ} < 2\theta < 20^{\circ}$. Anschliessend wurden die Intensitäten von allen unabhängigen Reflexen im Bereich $1^{\circ} < 2\theta < 52^{\circ}$ gemessen. Eine Orientierungskontrolle erfolgte jeweils nach 200 gemessenen Reflexen, und die Intensität des (112)-Reflexes wurde alle 3 h überprüft. Während der gesamten Messdauer wurde keine Verminderung der Intensität festgestellt. Insgesamt wurden 2110 Reflexe gemessen, davon 1933 unabhängige, von denen 797 als nicht beobachtet vermerkt wurden. Die Intensitäten wurden für Lorentz- und Polarisationseffekte korrigiert. Die Kristallstruktur konnte nach der Schweratommethode bestimmt werden. Die Positionen der H-Atome wurden aufgrund der Bindungsgeometrie berechnet. Die Struktur wurde nach der Methode der kleinsten Fehlerquadrate mit isotropen Temperaturfaktoren verfeinert. Der abschliessende Gütefaktor berägt R = 0,078 für die 1136 beobachteten Reflexe. Alle Berechnungen wurden mit dem Programmsystem KRIPROG [34] gemacht.

Die wichtigsten Daten der Molekülstruktur sind in den *Tab.9* und *10* sowie in *Fig. 1* zusammengestellt. Sie zeigen, dass dem Hauptisomer von **11k** die cis, (Z), cis-Konfiguration zukommt. Wie erwartet liegen die C-Atome der Dreiringe in der Ebene der zentralen (C=C)-Bindungen, welche mit 1,29 Å recht kurz ist. Dies deckt sich mit der *Röntgen*-Struktur eines andern kürzlich von uns isolierten Bi(cyclopropylidens), dessen (C=C)-Bindungslänge 1,31 Å beträgt [31]. Ebenso fällt bei den Bindungslängen der Dreiring-C-Atome auf, dass C(1)–C(6) mit 1,54 Å deutlich länger ist als C(1)–C(7) und C(6)–C(7) mit 1,48 Å, dementsprechend ist der Gegenwinkel von C(1)–C(6), nämlich C(1)–C(7)–C(6), mit 62,6° etwas grösser als die beiden andern Dreiring-Winkel mit *ca.* 58,9°. Vor allem zeigen die *Röntgen*-Strukturdaten, dass die isolierte Verbindung eine *cis*,

Formel	$C_{12}H_{16}O_2$	Kristallsystem	monoklin
Formelgewicht	192,0	Raumgruppe	$P2_1/c$
Dichte (ber.)	1,28 g cm ⁻³	Gitterparameter	a = 6,45 (2) Å
Zellvolumen	990,03 Å ³	-	b = 15,83 (4) Å
Z ^a)	4		c = 11,34 (4) Å
μ (Mo K_{γ})	0,852 cm ⁻¹		$\beta = 121,2(1)^{\circ}$

Tab.9. Kristalldaten des Hauptisomers von 11k

Tab. 10. Wichtigste Bindungslängen [Å] und Bindungswinkel [9] mit Standardabweichungen des Hauptisomers von 11k. Zur Numerierung s. Formel 11k in Schema 7.

Bindung	Bindungslänge	Bindungen	Bindungswinkel	Bindungen	Bindungswinkel
C(1) - O(2)	1,415 (4)	C(1)-O(2)-C(3)	114,6 (3)	C(4)-C(5)-C(6)	112,3 (3)
C(1)-C(6)	1,535 (6)	C(1) - C(6) - C(5)	118,8 (3)	C(5) - C(6) - C(7)	123,6 (3)
C(1) - C(7)	1,476 (6)	C(1) - C(6) - C(7)	58,6 (4)	C(6) - C(1) - C(7)	58,8 (2)
O(2)-C(3)	1,439 (4)	C(1)-C(7)-C(6)	62,6 (4)	C(6) - C(7) - C(1)	62,6 (4)
C(3)-C(4)	1,518 (6)	C(1)-C(7)-C(7')	148,1 (3)	C(6) - C(7) - C(7')	148,1 (9)
C(4)-C(5)	1,530 (5)	O(2) - C(1) - C(6)	119,3 (2)	C(7) - C(7') - C(1')	150,2 (9)
C(5)-C(6)	1,518 (4)	O(2) - C(1) - C(7)	116,7 (3)	C(7) - C(7') - C(6')	144,2 (3)
C(6) - C(7)	1,479 (6)	O(2) - C(3) - C(4)	110,0 (4)		
C(7)-C(7')	1,287 (6)	C(3)-C(4)-C(5)	110,7 (3)		

Fig. 1. Molekülstruktur des Hauptisomers cis, (Z), cis-11k. a) Aufsicht; b) Seitenansicht.

(Z), cis-Konfiguration aufweist (Fig. 1). Dies bedeutet, dass das Hauptisomer von 11k nicht in der energetisch günstigsten Konfiguration vorliegt. Aus der Molekülstruktur geht ferner hervor, dass die beiden Sechsringe die 'twist'-Form einnehmen, so dass die beiden Paare der den O-Atomen benachbarten CH_2 -Gruppen ($CH_2(3)$ - $CH_2(4)$ bzw. $CH_2(3')$ - $CH_2(4')$) gestaffelt vorliegen.

5.2. Spektroskopische Daten der 'Carben-Dimere'. Auch die spektroskopischen Daten der 'Carben-Dimere' sind mit den Strukturen 11 in Übereinstimmung, und die bei Hochauflösung gemessenen Molekül-Ionen der Massenspektren beweisen die Summenformel. Dabei sind die recht bandenreichen IR-Spektren meist nicht besonders aussagekräftig, da die struktur-typische (C=C)-Streckenschwingung der zentralen (C=C)-Bindung, welche bei vergleichsweise hoher Wellenzahl erwartet wird, im IR-Spektrum aus Symmetriegründen sehr schwach ist. Wesentlich mehr Informationen liefern die ¹³C- und ¹H-NMR-Spektren.

Fig. 2. Ausschnitt aus dem ¹H-NMR-Spektrum von cis, (Z), cis-11k (300 MHz, CDCl₃)

Im ¹³C-NMR-Spektrum von *cis*, (*Z*), *cis*-11k liegt das Signal der quartären Vinyl-C-Atome der zentralen (C=C)-Bindung bei 121,0 ppm, und die beiden übrigen Cyclopropan-C-Atome absorbieren bei 50,3 (C(1)) und 14,4 ppm (C(6)). Generell liegen alle C-Atome des Dreirings wie erwartet bei vergleichsweise kleiner Frequenz. Dementsprechend absorbieren die restlichen C-Atome bei vergleichsweise hoher Frequenz, nämlich das dem O-Atom benachbarte C(3) bei 63,6 ppm und die Sechsring-Atome C(4) und C(5) bei 22,6 und 20,2 ppm.

Die ¹H-NMR-Spektren der Bi(cyclopropylidene) 11 sind deshalb überraschend komplex, weil die Dreiring-H-Atome aufgrund der Fernkopplungen über die zentrale (C=C)-Bindung Spektren höherer Ordnung bilden. So erzeugen die Dreiring-H-Atome von 2,2'-disubstituierten 1,1'-Bi(cyclopropylidenen) selbst bei 400 MHz und guter Trennung der Signale AA'MM'XX'-Spektren (Abbildung des Spektrum von 11m in [22]). Auch die dem O-Atom benachbarten Dreiring-H-Atome von $cis_{(Z)}$, cis_{11k} sind als XX'-Teil eines Spektrums höherer Ordnung bei 4,06 ppm zu erkennen (Fig. 2). Dagegen kann das Aufspaltungsmuster der beiden m der geminalen H-Atome an C(3)/(C3') bei 3,66 und 3,43 ppm näherungsweise nach erster Ordnung analysiert werden und gibt Aufschluss über die Konformation der beiden symmetrisch liegenden Sechsringe in Lösung. Die geminale Kopplung J(A,B)beträgt wie erwartet 10,85 Hz. H_A bei 3,43 ppm besitzt eine weitere grosse vicinale Kopplung J(A,X) von 8,83 Hz. Dies weist darauf hin, dass das Molekül eine Konformation mit einem weitgehend trans-diaxial stehenden Nachbar-Proton H_X and C(4)/(C4') besitzt. Zusätzlich koppelt H_A mit einem äquatorialen Proton H_Y and C(4)/C(4') mit 3,13 Hz. Der kleine Wert von J(A, Y) lässt vermuten, dass H_Y praktisch trans-diaxial zum O-Atom steht. Dementsprechend müsste H_B an C(3) annähernd äquatorial stehen, was durch die beiden vicinalen Kopplungen J(B,X) = 4,78 Hz und J(B,Y) = 3,31 Hz gestützt wird. Diese Ergebnisse machen wahrscheinlich, dass die beiden Pyran-Ringe des Bi(cyclopropylidens) cis, (Z), cis-11k in Lösung dieselbe 'twist'-Konformation aufweisen, wie sie durch die Röntgen-Strukturdaten im Kristall bewiesen worden ist.

Die Autoren danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung (Projekte 20.31217.91 und 20.37336.93) für die Unterstützung eines Teils der Arbeit.

Experimenteller Teil

Allgemeines. Wenn nichts anderes vermerkt ist, wurden die Reaktionen in abs. Solventien und mit abs. Reagenzien in ausgeheizten Dreihals- oder Zweihals-Rundkolben mit Inertgas, Überleitung und Septum (evtl. zusätzlich mit Tieftemperatur-Thermometer) unter N₂ oder Ar durchgeführt. Kältemischungen: Trockeneis/i-PrOH (-78°); mit fl. N₂ teilweise ausgefrorenes CH₂Cl₂ (-95°) bzw. Et₂O (-116°). Säulenchromatographie: Chromatographie-Gel C560, 50 µm, Chemische Fabrik Uetikon, sowie 'flash'-Kieselgel, J. T. Baker 70241, 30– 60 µm; bei tiefsiedenden Solventien wie Et₂O, Pentan, CH₂Cl₂ wurde eine doppelwandige Chromatographiesäule mit Wasserkühlung verwendet. Verwendete Abkürzung: TEBA = Triethyl(benzyl)ammonium-chlorid. Ausführliche experimentelle Angaben, besonders auch zur Variation der Reaktionsparameter, vgl. [2] [5]. UV: Perkin-Elmer 554. IR: Perkin-Elmer 399B. NMR: Bruker AM-400, Bruker AM-300 und Varian EM-360. MS: Varian-Mat CH-7A. GC-MS: Varian-Mat 44S (Säule SE-54, 22 m).

1. 1,1-Dibromocyclopropane 1. 1.1. Allgemeine Arbeitsvorschrift (AAV). Methode nach [35]: Zu ca. 5 g Olefin und 1 mol-equiv. t-BuOK in 15 ml Cyclohexan bei -10° (100 ml Erlenmeyerkolben, N₂-Überleitung, Septum, Magnetrührer) tropft man während ca. 20 min 1 mol-equiv. CHBr₃ und rührt je 1 h bei -10° sowie bei RT. Das Gemisch wird sodann bei RT. mit 20 ml 1N HCl versetzt und im Scheidetrichter mit Et₂O (3 × 30 ml) extrahiert. Die vereinigte org. Phase wird getrocknet (MgSO₄), eingedampft und das Rohprodukt durch Umkristallisation, Destillation oder Chromatographie weiter gereinigt.

Nach dieser AAV werden **la-k** hergestellt.

1.2. 2-Benzyl-1,1-dibromocyclopropan $(1a)^{22}$). Mit 4,8 ml (36 mmol) 3-Phenylprop-1-en, 5,1 g (45 mmol) t-BuOK, 15 ml Cyclohexan und 4,0 ml (45 mmol) CHBr₃. Das Rohprodukt wird bei 140° 10⁻³ Torr im Ölbad destilliert: 3,7 g (35%) blassgelbes Öl $1a^{23}$).

1.3. 1,1-Dibromospiro[2.4]heptan (1b)²²). Mit 4,5 ml (42 mmol) Methylidencyclopentan, 5,3 g (47 mmol) t-BuOK, 15 ml Cyclohexan und 4,2 ml (47 mmol) CHBr₃. Das Rohprodukt wird bei 58°/2 mbar destilliert: 6,7 g (63%) farbloses Öl $1b^{23}$).

1.4. 1,1-Dibromo-2-ethyl-2-methylcyclopropan $(1c)^{22}$). Mit 5 ml (46 mmol) 2-Methylbut-1-en, 5,2 g (46 mmol) t-BuOK, 15 ml Cyclohexan und 3,9 ml (44 mmol) CHBr₃. Das Rohprodukt wird bei 60°/3 mbar im Ölbad destilliert: 6,1 g (55%) farbloses Öl $1c^{23}$).

²²) Nicht optimierte Vorschrift.

²³) Spektroskopische Daten, vgl. [2].

1.5. 7,7-Dibromobicyclo/4.1.0/heptan (1d)²²). Mit 20 ml Cyclohexen (als Lsgm. eingesetzt), 6,0 g (53 mmol) t-BuOK und 4,75 ml (53 mmol) CHBr3. Das Rohprodukt wird bei 70°/0,2 Torr destilliert: 8,5 g (63%) farbloses Öl 1d.

1.6. 1,1-Dibromo-2,2,3,3-tetramethylcyclopropan (1e)²²). Aus 5 ml (42 mmol) 2,3-Dimethylbut-2-en, 4,7 g (42 mmol) t-BuOK, 15 ml Cyclohexan und 3,8 ml (42 mmol) CHBr₃. Das Rohprodukt wird aus Pentan umkristallisiert (RT./0°): 3,4 g (32%) farblose Nadeln 1e.

1.7. 1.1-Dibromo-2-phenylcyclopropan (11) [36]²²). Mit 4.5 ml (39 mmoł) Styrol, 4.3 g (39 mmol) t-BuOK, 20 ml Cyclohexan und 3,5 ml (39 mmol) CHBr₃. Das Rohprodukt wird bei 80°/0,2 Torr destilliert: 3,9 g (34%) blassgelbes Öl 1f.

1.8. 1,1-Dibromo-2-methyl-2-phenylcyclopropan (1g)22). Mit 5,2 ml (40 mmol) 2-Phenylprop-1-en, 5,1 g (45 mmol) t-BuOK, 15 ml Cyclohexan und 4,0 ml (45 mmol) CHBr₃. Das Rohprodukt wird bei $140^{\circ}/10^{-3}$ Torr (Ölbad) destilliert: 7,4 g (64% farbloses Öl 1g²³).

1.9. 1,1-Dibromo-2,2-diphenylcyclopropan (1h)²²). Mit 5,2 g (29 mmol) 1,1-Diphenylethen, 3,1 g (28 mmol) t-BuOK, 15 ml Cyclohexan und 2,5 ml (28 mmol) CHBr₃. Das Rohprodukt wird aus CH₂Cl₂/Et₂O/Pentan 1:1:1 umkristallisiert $(40^{\circ}/0^{\circ})$: 3,5 g (36%) farblose Kristalle 1h.

1.10. 1,1-Dibromo-2-butoxycyclopropan (11)²²). Mit 5,5 ml (43 mmol) Butyl-vinyl-ether, 5,1 g (45 mmol) t-BuOK, 20 ml Cyclohexan und 4,0 ml (45 mmol) CHBr₃. Das Rohprodukt wird bei 90° (Ölbad)/0,2 Torr destilliert: 3,7 g (32%) blassgelbes Öl 1i.

1.11. 7,7-Dibromo-2-oxabicyclo[4.1.0]heptan (1k). Mit 7,8 ml (0,1 mol) 3,4-Dihydro-2H-pyran, 8 g (70,6 mmol) t-BuOK, 30 ml Pentan und 4,5 ml (50 mmol) CHBr₃. Das Rohprodukt wird bei 40°/10⁻³ Torr destilliert: 9,6 g (75%) farbloses Öl 1k.

Folgende 1,1-Dibromocyclopropane 1 wurden nach der Phasentransfer-Methode [37] hergestellt.

1.12. 1,1-Dibromo-2-phenoxycyclopropan (11)²²). Zu 6,0 g (50 mmol) Vinyl-phenyl-ether, 8,9 ml (99,6 mmol) CHBr₁ und 186 mg (0,82 mmol) TEBA werden in einem Erlenmeyerkolben unter intensivem Rühren 18 ml 50% NaOH-Lsg. getropft. Nach 5 h Rühren bei 40° wird das dunkelbraune Gemisch auf RT. abgekühlt, filtriert und mit Et₂O (3 × 100 ml) extrahiert. Die vereinigten org. Phasen werden getrocknet (MgSO₄) und eingedampft. 'Flash'-Chromatographie (60 g Silicagel, Pentan) des dunkelbraunen Rohprodukts ergibt 8,1 g (55%) farblose Kristalle 11. Schmp. 40°.

1.13. 1,1-Dibromo-2-(phenylthio)cyclopropan (1m). S. [22].

1,14. 16,16-Dibromopentacyclo/6.6.3.0^{2,7}.0^{9,14}.0^{15,17}]heptadeca-2,4,6,9,11,13-hexaen (1n). S. [33].

2. Bi(cyclopropylidene) 11. 2.1. AAV: Methode B ('Thermodynamische Kontrolle'¹¹)). Zu einer Lsg. von 1,1-Dibromocyclopropan 1 in abs. THF (25 ml Zweihalskolben mit Septum, N₂-Überleitung, Magnetrührfisch) wird bei -95° l mol-equiv. BuLi (bez. 1; ca. 1,6м in Hexan) getropft. Man rührt das Gemisch l h bei -95°, fügt bei -95° in einem Guss 0,1 mol-equiv. trockenes CuCl₂²⁴) zu, rührt weitere 60 min bei -95° und lässt im Kühlbad 1 h auf RT. erwärmen. Das Gemisch wird im Scheidetrichter mit 10 ml 1n HCl versetzt und mit Et₂O $(2 \times 20 \text{ ml})$ extrahiert. Die vereinigten org. Phasen werden mit wenig H₂O gewaschen, getrocknet (MgSO₄) und eingedampft.

AAV: Methode A ('Kinetische Kontrolle'11)). Zu 1,1-Dibromocyclopropan 1 und 0,1 mol-equiv. (bez. 1) trockenem CuCl₂ in abs. THF bei -95° wird langsam 1 mol-equiv. BuLi (bez. 1; ca. 1,6м in Hexan) getropft und 1 h bei -95° gerührt. Dann lässt man im Kühlbad innerhalb von 1 h auf RT. erwärmen. Aufarbeitung, vgl. Methode B. Nach diesen Vorschriften werden 11a-n hergestellt (Abweichungen sind vermerkt)²⁵).

2.2. 2.2'-Dibenzyl-1,1'-bi(cvclopropyliden) (11a). Methode A mit 0,6 g (2,07 mmol) 1a, ca. 30 mg (0,1 mol-equiv. bez. 1a) CuCl₂, 6 ml THF und 1,30 ml (2,07 mmol) BuLi (1,59M in Hexan). Das Rohrprodukt wird chromatographiert (Silicagel, Et₂O/Hexan 1:100): 235 mg (87%) gelbes viskoses Öl von 11a mit R_f 0,26–0,30, das nochmals über eine kurze Säule chromatographiert wird (Silicagel, Hexan): farbloses Öl. R_f 0,13. GC (Rohprodukt) Isomerenverhältnis 37:33:25:5. IR (Film auf KBr²⁶)): 3060s, 3020s, 2970s, 1600m, 1495s, 1450s, 740s, 700s. ¹H-NMR (300 MHz, CDCl₃): 7,1–7,3 (*m*, 10 H); 2,45–2,8 (4*dd*, 4 H); 1,8 (*m*, 2 H); 1,4 (*m*, 2 H); 1,0 (*m*, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 141,58 (s); 141,47 (s); 141,28 (s); 128,74 (d); 128,58 (d); 128,52 (d); 128,43 (d); 128,36 (d); 128,28 (d); 128,20 (d); 126,06 (d); 125,99 (d); 115,95 (s); 115,81 (s); 115,72 (s); 39,15 (t); 39,11 (t); 38,90(t); 17,17(d); 17,14(d); 16,68(d); 16,49(d); 10,03(t); 9,93(t); 9,81(t); 9,71(t). MS²⁶): 260(5, M⁺), 245

²⁴) Trocknung von CuCl₂: H₂O-freies CuCl₂ (Fluka) wird bei 10⁻³ Torr 1 h auf ca. 80° erhitzt.

²⁵) Weitere präparative Versuche unter Variation von Reaktionsparametern, vgl. [2].

²⁶) IR: Nur charakteristische Banden. MS: Nur M⁺, Basispeak und Schlüsselbruchstücke.

(15), 169 (100), 155 (86), 141 (79), 128 (70), 115 (48), 104 (42), 91 (86), 65 (40)²⁷). Anal. ber. für C₂₀H₂₀: C 92,26, H 7,74; gef.: C 91,70, H 7,77.

2.3. 1,1'-Bi(spiro[2.4]heptyliden) (11b). Methode B, mit 0,4 g (1,57 mmol) 1b, 5,5 ml THF, 1,0 ml (1,58 mmol) BuLi (1,58m in Hexan) und ca. 20 mg (0,1 mol-equiv. bez. 1b) CuCl₂. Das Rohprodukt wird 'flash'-chromatographiert (Silicagel, Hexan): 130 mg (87%) farbloses Öl von 11b mit R_f 0,60–0,66. Die beiden Diastereoisomere können präparativ im GC getrennt werden.

Daten von Isomer $1^{28}2^{56}$: IR (Film auf KBr)²⁶): 2960s, 2870s, 1450m, 990m. ¹H-NMR (300 MHz, CDCl₃): 1,5–1,8 (m, 16 H); 1,1 (s, 4 H). ¹³C-NMR (75 MHz, CDCl₃): 118,5 (s); 35,5 (t); 26,6 (t); 26,1 (s); 16,9 (t). MS²⁶): 188 (17, M^+), 173 (66), 159 (90), 145 (98), 131 (95), 119 (82), 117 (80), 105 (88), 91 (100), 79 (66), 77 (66), 67 (60), 41 (33)²⁷).

Daten von Isomer 2²⁸)²⁶): IR (Film auf KBr)²⁶): 2960s, 2860s, 1450m; 970m. ¹H-NMR (300 MHz, CDCl₃): 1,65–1,85 (*m*, 16 H); 1,2 (*s*, 4 H). ¹³C-NMR (75 MHz, CDCl₃): 119,5 (*s*); 35,9 (*t*); 26,8 (*s*); 26,7 (*t*); 16,6 (*t*). MS²⁶): 188 (8, *M*⁺⁺), 173 (46), 159 (58), 145 (100), 131 (84), 119 (76), 105 (88), 91 (86), 79 (66), 67 (75)²⁷).

2.4. 2,2'-Diethyl-2,2'-dimethyl-1,1'-bi(cyclopropyliden) (11c). Methode A, mit 0,50 g (2,05 mmol) 1c, ca. 30 mg (0,1 mol-equiv. bzw. 1c) CuCl₂, 6 ml THF und 1,3 ml (2,05 mmol) BuLi (1,59 min Hexan). Das Rohprodukt wird 'flash'-chromatographiert (Silicagel, Hexan): 110 mg (65%) farbloses Öl von 11c (Isomerengemisch) mit R_f 0,71–0,77. Zur weiteren Reinigung wird ein zweites Mal 'flash'-chromatographiert. 11c: IR (Film auf KBr)²⁶): 2960s, 1460m, 1375m, 1110w, 940w. ¹H-NMR (300 MHz, CDCl₃): 1,25–1,6 (m, 4 H); 1,1–1,2 (4s, 6 H); 0,8–1,1 (m, 10 H). ¹³C-NMR (75 MHz, CDCl₃): 120,44 (s); 120,36 (s); 119,81 (s); 31,13 (t); 31,01 (t); 30,91 (t); 30,83 (t); 21,89 (q); 21,63 (q); 21,47 (q); 21,45 (s); 21,40 (q); 21,37 (s); 20,65 (s); 20,63 (s); 16,56 (t); 16,54 (t); 16,44 (t); 16,02 (t); 11,20 (q); 11,01 (q); 10,86 (q). MS²⁶): 164 (2, M^+), 149 (94), 135 (86), 121 (56), 107 (97), 93 (86), 79 (100), 77 (66), 67 (54), 55 (55), 41 (42)²⁷).

2.5. 7,7'-Bi(bicyclo[4.1.0]heptyliden) (11d). Methode A, mit 0,38 g (1,50 mmol) 1d, ca. 20 mg CuCl₂, 5 ml THF und 0,94 ml (1,50 mmol) BuLi (1,58 min Hexan). Das Rohprodukt wird 'flash'-chromatographiert (Silicagel, Hexan): 120 mg (85%) farbloser Feststoff der beiden Isomere von 11d mit R_{f} 0,65 und 0,77. Die Hauptfraktion (R_{f} 0,65) wird aus Pentan umkristallisiert (RT./-30°); 85 mg (60%) farblose Kristalle. Schmp. 119°. Spektroskopische Daten, vgl. [38].

2.6. 2,2',2',3,3',3'-Octamethyl-1,1'-bi(cyclopropyliden) (11e). Methode B, mit 0,80 g (3,1 mmol) 1e, ca. 40 mg (0,1 mol-equiv. bez. 1e) CuCl₂, 10 ml THF und 1,95 ml (3,1 mmol) BuLi (1,58m in Hexan). Das Rohprodukt wird 'flash'-chromatographiert (Silicagel, Hexan): 90 mg (30%) farbloser Feststoff 11e mit R_f 0,71. Zur weiteren Reinigung wird aus wenig Pentan umkristallisiert (RT./-30°): 55 mg (18%) farblose Kristalle. Schmp. 83–84°. IR (CHCl₃/CS₂)²⁶): 2940s, 1460m, 1370m, 1035m, 960m. ¹H-NMR (60 MHz, CDCl₃): 1,1 (s, 24 H). ¹³C-NMR (100 MHz, CDCl₃): 128,3 (s); 21,6 (s); 21,2 (g). MS²⁶): 192 (6, M^+), 177 (20), 149 (100), 135 (30), 121 (28), 108 (59), 93 (79), 81 (46), 79 (22), 55 (26), 41 (54)²⁷).

2.7. 2,2'-Diphenyl-1,1'-bi(cyclopropyliden) (11f). Methode A, mit 400 mg (1,45 mmol) 1f, 20 mg (0,145 mmol) CuCl₂, 5 ml THF und 0,91 ml (1,45 mmol) BuLi (1,6M in Hexan). Das Rohprodukt wird 'flash'-chromatographiert (30 g Silicagel, Hexan/Et₂O 100:1): 86 mg (50%) farbloses viskoses Öl von 11f (4 Diastereoisomere). R_f 0,25. IR (Film)²⁶): 3030m, 1610s, 1495s, 1455s, 760s, 700s. ¹H-NMR (300 MHz, CDCl₃): 7,0-7,4 (m, 10 H); 2,8 (m, 2 H); 1,9 (m, 2 H); 1,25-1,5 (m, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 142,2 (s); 128,0-128,4 (d); 126,7-126,9 (d); 125,7-125,9 (d); 116,2-116,5 (s); 20,4-20,9 (d); 14,1-15,1 (t). MS²⁶): 232 (18, M^+), 231 (30), 217 (35), 216 (29), 215 (30), 202 (20), 141 (58), 128 (100), 115 (52), 104 (34), 102 (27), 91 (21), 77 (23), 51 (23)²⁷).

2.8. 2,2'-Dimethyl-2,2'-diphenyl-1,1'-bi(cyclopropyliden) (11g). Methode A, mit 0,80 g (2,76 mmol) 1g, ca. 40 mg (0,1 mol-equiv. bzw. 1g) CuCl₂, 8 ml abs. THF und 1,75 ml (2,76 mmol) BuLi (1,58M in Hexan). Das Rohprodukt wird 'flash'-chromatographiert (Silicagel, Hexan): 270 mg (75%) viskoses Öl von 11g mit R_f 0,22. Isomerenverhältnis laut GC 38:29:17:17. IR (Film auf KBr)²⁶): 3060s, 3030s, 2960s, 1600s, 1495s, 1445s, 1375m, 1095s, 1065s, 1030s, 940s, 760s, 695s. ¹H-NMR (300 MHz, CDCl₃): 7,1-7,4 (m, 10 H); 11,50-1,65 (4s, m, 10 H). ¹³C-NMR (75 MHz, CDCl₃): 145,58 (s); 145,55 (s); 145,31 (s); 144,82 (s); 128,18 (d); 128,17 (d); 127,95 (d); 126,74 (d); 126,71 (d); 126,63 (d); 125,82 (d); 125,75 (d); 125,77 (d); 125,77 (d); 120,73 (s); 120,51 (s); 24,76 (s); 24,54 (s); 24,29 (q); 24,00 (q); 23,96 (q); 23,70 (s); 23,57 (s); 20,93 (t); 20,76 (t); 20,49 (t). MS²⁶): 260 (72, M^+), 245 (100), 230 (63), 215 (70), 169 (50), 155 (72), 141 (65), 129 (60), 115 (53), 105 (60), 91 (26)²⁷).

2.9. 2,2,2',2'-Tetraphenyl-1,1'-bi(cyclopropyliden) (11h): Methode B, mit 0,28 g (0,80 mmol) 1h, 3 ml THF, 0,50 ml (0,80 mmol) BuLi (1,58M in Hexan) und ca. 20 mg (0,2 mol-equiv. bzw. 1h) CuCl₂. Das Rohprodukt (Isomerenverhältnis laut ¹H-NMR 76:24, Gesamtausbeute 60%) wird 'flash'-chromatographiert (Silicagel, Et₂O/Hexan 4:100). Die Fraktion mit R_f 0,46 wird aus Hexan (50°/RT.) umkristallisiert: 55 mg (36%) farblose Kristalle

²⁷) Weitere spektroskopische Daten und Abbildungen der Spektren vgl. [2-5].

²⁸) Die spektroskopische Unterscheidung der Isomere ist unsicher.

von 11h (Isomer 1)²⁶). Schmp. 130–131°. Isomer 1²⁸)²⁶): IR (CHCl₃/CS₂)²⁶): 3060m, 3010m, 1600s, 1490s, 1450m, 1020m, 795s. ¹H-NMR (60 MHz, CDCl₃): 7,15–7,50 (m, 20 H); 2,16 (s, 4 H). ¹³C-NMR (100 MHz, CDCl₃): 143,8 (s); 128,2 (2d); 126,2 (d); 120,0 (s); 33,6 (s); 21,9 (t). MS²⁶): 384 (41, M^{++}), 305 (22), 293 (40), 215 (46) 204 (100), 192 (50), 180 (35), 179 (35), 165 (44), 115 (15), 91 (26)²⁷). Anal. ber. für C₃₀H₂₄: C 93,71, H 6,29; gef.: C 93,21, H 6,35.

Anreicherung von **11h** (*Isomer 2*)²⁸) durch Umsatz von **1h** in Gegenwart von FeCl₃ nach *Methode B*, mit 0,28 g (0,80 mmol) **1h**, 3 ml THF, 0,5 ml (0,80 mmol) BuLi (1,58M in Hexan) und 0,26 g (0,2 mol-equiv. bzw. **1h**) FeCl₃ (statt CuCl₂). Das Rohprodukt besteht laut ¹H-NMR (300 MHz) aus *Isomer 1/Isomer 2* 29:71 (Gesamtausbeute 47%). Das Rohprodukt wird 'flash'-chromatographiert (Silicagel, Et₂O/Hexan 4:100). Die Fraktion mit R_f 0,46 wird aus Hexan umkristallisiert (50°/RT.): 15 mg (10%) **11h** (*Isomer 1*). Die Mutterlauge wird erneut aus Hexan umkristallisiert (RT./0°): 45 mg (29%) farblose Kristalle von **11h** (*Isomer 2*). *Isomer 2²⁸*): IR (CHCl₃/CS₂)²⁶): 3060m, 3000m, 1600s, 1490s, 1445s, 1020s, 700s. ¹H-NMR (300 MHz, CDCl₃): 7,0–7,2 (m, 20 H); 2,14 (s, 4 H). ¹³C-NMR (75 MHz, CDCl₃): 143,2 (s); 128,4 (d); 128,1 (d); 126,1 (d); 120,3 (s); 34,6 (s); 21,6 (t). MS²⁶): 384 (100, M^+), 305 (35), 293 (81), 215 (60), 204 (52), 192 (67), 180 (42), 167 (38), 115 (13), 91 (17)²⁷). Anal. ber. für C₃₀H₂₄: C 93,71, H 6,29; gef.: C 93,54, H 6,36.

2.10. 2,2'-Dibutoxy-1,1'-bi(cyclopropyliden) (11i). Methode B, mit 1,0 g (3,7 mmol) 1i, 10 ml THF, 2,4 ml (3,7 mmol) BuLi (1,57 min Hexan) und 40 mg (0,1 mol-equiv. bez. 1i) CuCl₂. Das Rohprodukt wird 'flash'-chromatographiert (Silicagel, Et₂O/Hexan 7:100): 100 mg (21 %) blassgelbes Öl von 11i mit R_{f} 0,42 (*Isomer 1*)²⁷) bzw. 0,33 (*Isomer 2*)²⁷).

Daten von Isomer 1²⁸): IR (Film auf KBr)²⁶): 2960s, 2870s, 1465m, 1320m, 1165s. ¹H-NMR (300 MHz, CDCl₃): 3,8 (m, 2 H); 3,60 (dt, ²J = 9,3, 6,7, 2 H); 3,58 (dt, ²J = 9,3, ³J = 6,6, 2 H); 1,25-1,6 (m, 12 H); 0,9 (t, J = 7,3, 6 H). ¹³C-NMR (75 MHz, CDCl₃): 117,2 (s); 70,6 (t); 52,7 (d); 31,7 (t); 19,3 (t); 13,9 (q); 12,2 (t). MS²⁶): 224 (7, M^+), 167 (17), 111 (100), 83 (69), 69 (41), 57 (82), 41 (47), 29 (27)²⁷).

Daten von Isomer 2²⁸): IR (Film auf KBr)²⁶): 2960s, 2870s, 1465m, 1425m, 1340m, 1165s, 1120s, 1080s. ¹H-NMR (300 MHz, CDCl₃): 3,85 (m, 2 H); 3,65 (t, J = 6,8, 4 H); 1,3–1,65 (m, 12 H); 0,9 (t, J = 7,35, 6 H). ¹³C-NMR (75 MHz, CDCl₃): 117,1 (s); 71,0 (t); 53,0 (d); 31,7 (t); 19,3 (t); 13,9 (q); 13,2 (t). MS²⁶): 224 (7, M^+), 167 (9), 111 (100), 83 (86), 69 (31), 57 (94), 41 (67), 29 (34)²⁷).

2.11. 7,7'-Bi(2-dioxabicyclo[4.1.0]heptyliden) (11k). Methode B, mit 2 g (7,8 mmol) 1k, 24 ml THF, 5 ml (7,8 mmol) BuLi (1,6M in Hexan) und 105 mg (0,78 mmol) CuCl₂. Das Rohprodukt²⁹) wird 'flash'-chromatographiert (60 g Silicagel, Hexan/Et₂O 1:1). 197 mg (26%) Isomerengemisch 11k mit R_f 0,48 und 0,38²⁹). Beide Zonen werden 2mal aus Et₂O fraktioniert umkristallisiert (RT./4°): 26 mg (3,5%) *Isomer 1* mit Schmp. 84° und 110 mg (14,7%) *Isomer 2* mit Schmp. 86°.

Daten von Isomer 1: IR (KBr)²⁶): 2930s, 1130s, 1100s, 880m, 840m, 810s. ¹H-NMR (300 MHz, CDCl₃): 4,0 (m, 2 H); 3,6 (m, 2 H); 3,4 (m, 2 H); 2,0 (m, 2 H); 1,9 (m, 4 H); 1,5 (m, 4 H). ¹³C-NMR (75 MHz, CDCl₃): 120,7 (s); 63,9 (t); 50,3 (d); 22,7 (t); 20,0 (t); 15,7 (d). MS²⁶): 192 (62, M^{++}), 163 (94), 149 (53), 135 (100), 121 (88), 108 (97), 91 (96), 71 (100), 71 (91), 65 (43), 55 (45), 43 (41)²⁷).

Daten von Isomer 2 (cis, (Z), cis-11k): IR (KBr)²⁶): 2946s, 2924s, 2874s, 2862s, 1134s, 1112s, 1100s, 985m, 925m, 880m, 809s, 756m-s. ¹H-NMR (300 MHz, CDCl₃): 4,06 (m, 2 H); 3,66 (m, 2 H); 3,43 (m, 2 H); 1,98 (m, 4 H); 1,87 (m, 2 H); 1,52 (m, 4 H). ¹³C-NMR (75 MHz, CDCl₃): 121,1 (s); 63,6 (t); 50,3 (d); 22,6 (t); 20,2 (t); 14,4 (t). MS^{26}): 193 (7), 192 (34, M^+), 163 (61), 149 (39), 147 (34), 135 (68), 121 (68), 108 (66), 107 (65), 105 (49), 91 (100), 79 (90), 77 (62), 71 (92), 65 (36), 55 (36), 43 (36), 41 (36), 39 (19)²⁷). Anal. ber. für C₁₂H₁₆O₂ (192,25): C 74,97, H 8,39; gef.: C 74,78, H 8,39.

2.12. 2,2'-Diphenoxy-1,1'-bi(cyclopropyliden) (11). Methode A, mit 2 g (6,8 mmol) 11, 90 mg (0,68 mmol) CuCl₂, 24 ml THF und 4,8 ml (7,2 mmol) BuLi (1,6M in Hexan). Das Rohprodukt³⁰) wird 'flash'-chromatographiert (Silicagel, Hexan/Et₂O 6:1): 500 mg (56%) Isomerengemisch 111 mit $R_{\rm f}$ 0,57 und $R_{\rm f}$ 0,51³⁰). Das Hauptprodukt wird 2mal aus Pentan/Et₂O 20:1 fraktioniert kristallisiert: 270 mg (30%) farblose Kristalle mit Schmp. 143°. Daten des Hauptisomers: IR (KBr)²⁶): 1601s, 1590s, 1490s, 1419m, 1358m, 1253s, 1221s, 1169s, 1108m-s, 1064m-s, 958m, 747s, 690s. ¹H-NMR (300 MHz, CDCl₃): 7,22 (m, 4 H); 7,05 (d, 4 H); 6,92 (t, 2 H); 4,28 (m, 2 H); 1,78 (m, 2 H); 1,70 (m, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 158,6 (s); 129,5 (d); 121,4 (d); 117,3 (s); 115,2 (d); 50,6 (d); 13,7 (t). MS²⁶): 264 (10, M^+), 263 (47), 171 (46), 143 (38), 141 (49), 129 (52), 128 (100), 115 (51), 91 (40), 77 (88), 65 (44)²⁷).

²⁹) Isomerenverhältnis des Rohprodukts laut GC ca. 3:10:4:3 (teilweiser Abbau im GC). Davon lassen sich zwei Isomere rein isolieren.

³⁰) Gemisch von vier Isomeren (GC). Da im GC teilweise Zersetzung eintritt, kann das Isomerenverhältnis nicht bestimmt werden. Durch 'flash'-Chromatographie lassen sich zwei Isomere trennen. Das Hauptisomer kann durch Kristallisation gereinigt werden.

2.13. 2,2'-Bis(phenylthio)-1,1'-bi(cyclopropyliden) (11m): Methode A, mit 3,0 g (9,74 mmol) 1m, 130 mg (0,97 mmol) CuCl₂, 25 ml abs. Et₂O (statt THF) und 6,58 ml (10,2 mmol) BuLi (1,55M in Hexan). Das Rohprodukt³¹) wird in wenig CH₂Cl₂ aufgenommen und durch 'flash'-Chromatographie (Silicagel, *ca.* 100 ml Hexan, dann Hexan/Et₂O 100:1) getrennt. Das Eluat wird ohne Einengen bei -30° kristallisiert: 635 mg (44%) farblose Kristalle des Isomerengemischs 11m³¹) (R_f (Hexan/Et₂O 100:1) 0,21–0,31). Umkristallisation (RT./ -30°) aus Hexan/CH₂Cl₂ 5:2 ergibt 0,49 g (34%) Isomerengemisch 11m²⁹). ¹H-NMR (300 MHz, CDCl₃)³²): 7,5–7,1 (*m*, 10 H); 3,05–2,94 (*m*, 2 H); 2,05–1,86 (*m*, 2 H); 1,58–1,45 (*m*, 2 H). ¹³C-NMR (75 MHz, CDCl₃)³²): 137,8–137,5 (*s*); 128,9–128,7 (*d*); 127,8–127,3 (*d*); 125,6–125,5 (*d*); 115,1–115,8 (*s*); 16,9–16,3 (*d*); 15,2–14,4 (*t*).

Durch mehrfache 'flash'-Chromatographie (Silicagel, Hexan/Et₂O 100:1) und fraktionierte Kristallisation (Hexan/CH₂Cl₂ 5:2) lassen sich zwei Stereoisomere trennen. Alle spektroskopischen Daten sind sehr ähnlich, die Strukturzuordnung ist ungewiss. Daten des Hauptisomers: ¹H-NMR (300 MHz, CDCl₃): 7,5–7,1 (mehrere *m*, 10 H); 3,05 (*m*, 1 H); 1,95 (*m*, 1 H); 1,45 (*m*, 1 H). ¹³C-NMR (300 MHz, CDCl₃): 137,6 (*s*); 128,7 (*d*); 127,8 (*d*); 125,6 (*d*); 115,8 (*s*); 16,5 (*d*); 14,4 (*t*). MS²⁶): 297 (2), 296 (7, M^+); 187 (99), 185 (100), 172 (23), 171 (28), 154 (39), 153 (41), 147 (23), 141 (24), 135 (34), 128 (16), 115 (21), 109 (57), 91 (12), 77 (15), 65 (16)²⁷).

2.14. 16, 16⁻Bi(pentacyclo[6.6.3.0^{2.7}.0^{9,14}.0^{15,17}]heptadcca⁻2,4,6,9,11,13-hexaenyliden) (**11n**). Methode B, mit 0,50 g (1,33 mmol) **1n**, 10 ml THF, 0,85 ml (1,33 mmol) BuLi (1,58M in Hexan) und 0,22 g (1 mol-equiv. bzw. **1n**) trockenem FeCl₃ (statt CuCl₂). Das Extrakt (s. 2.1) wird auf *ca*. 5 ml eingeengt, wobei feine K ristalle ausfallen, die über ein Glasfilter abgenutscht werden: 70 mg (25%) farbloses Pulver **11n**. Schmp. 250° (Zers.). ¹H-NMR (300 MHz, (D₈)THF): 7,30 (*m*, 4 H); 7,04 (*m*, 4 H); 6,87, 6,85 (*m*, total 8 H); 4,51 (*s*, 4 H); 1,99 (*s*, 4 H). MS: 433 (4), 432 (20, M^+), 431 (7), 353 (3), 341 (13), 340 (3), 339 (4), 254 (13), 253 (19), 252 (11), 239 (8), 229 (7), 228 (6), 226 (3), 218 (4), 217 (32), 216 (42), 215 (69), 214 (5), 213 (7), 212 (10), 210 (4), 204 (4), 203 (13), 202 (15), 192 (14), 191 (100), 190 (9), 189 (19), 187 (2), 179 (13), 178 (53), 177 (3), 176 (8), 165 (9), 152 (3), 133 (5), 131 (5), 105 (6), 93 (14), 91 (4), 82 (3), 80 (3), 79 (4), 77 (5), 68 (24), 67 (22), 55 (4), 53 (5), 51 (2), 41 (3), 39 (5)³³). HR-MS: 432,18744 (C₃₄H₂₄, M^+ ; ber. 432,18780)²⁷).

3. Variation der Reaktionsbedingungen¹⁴). 3.1. Allgemeines. Durchführung der Ansätze unter N₂ bei -95° (Ausnahme, 3.2) und Aufarbeitung gemäss 2.1. Die Rohprodukte werden mittels GC/MS untersucht.

3.2. Variation der Reaktionstemperatur. Methode A, mit 200 mg (0,73 mmol) 1f, 10 mg CuCl₂ (0,1 mol-equiv. bzw. 1f) und 2,5 ml THF. Bei -78, -95 oder -105° wird innert 10 min mit 0,46 ml (0,73 mmol) BuLi (1,6м in Hexan) versetzt und 1 h bei -78, -95 oder -105° gerührt. Resultate in *Tab. 2*.

3.3. Variation der Reaktionszeit. Methode A, mit 200 mg (0,73 mmol) 1f, 100 mg (1 mol-equiv. bzw. 1f) CuCl₂ und 2,5 ml THF. Innerhalb von 10 min wird mit 0,46 ml (0,73 mmol) BuLi (1,6м in Hexan) versetzt und 10, 30, 60 oder 90 min gerührt. Resultate in *Tab. 3*.

3.4. Variation des Lösungsmittels. Methode A, mit 200 mg (0,73 mmol) 1f, 10 mg (0,1 mol-equiv. bzw. 1f) CuCl₂ und 5 ml THF/Et₂O 1:1. Innerhalb von 10 min wird mit 0,46 ml (0,73 mmol) BuLi (1,6м in Hexan) versetzt und 1 h gerührt. Resultate in *Tab.4*.

3.5. Variation der CuCl₂-Konzentration. Methode A, mit 200 mg (0,73 mmol) **1f**, 2,5 ml THF und 0, 10 oder 100 mg CuCl₂. Innerhalb von 10 min wird mit 0,46 ml (0,73 mmol) BuLi (1,6м in Hexan) versetzt und 1 h gerührt. Resultate in *Tab. 5*.

3.6. Variation der Konzentration an 1f. Methode A, mit 200 mg (0,73 mmol) 1f, 10 mg (0,1 mol-equiv. bzw. 1f) CuCl₂ und 1,25, 2,5, 5, 10 oder 20 ml THF. Innerhalb von 10 min wird mit 0,46 ml (0,73 mmol) BuLi (1,6м in Hexan) versetzt und 1 h gerührt. Resultate in *Tab. 6.*

3.7. Einfluss der Reaktionsführung¹¹). Methode A, mit 200 mg (0,73 mmol) **1f**, 10 oder 100 mg CuCl₂ (0,1 bzw. 1,0 mol-equiv. bzw. **1f**) und 2,5 ml THF. Innerhalb von 10 min wird mit 0,46 ml (0,73 mmol) BuLi (1,6м in Hexan) versetzt und 1 h gerührt. Resultate in *Tab.* 7.

Methode B, mit 200 mg (0,73 mmol) **1f** und 2,5 ml abs. THF. Innerhalb von 10 min wird mit 0,46 ml (0,73 mmol) **BuLi** (1,6 μ in Hexan) versetzt, 1 h gerührt, mit 10 oder 100 mg CuCl₂ (0,1 bzw. 1,0 mol-equiv. bzw. **1f**) versetzt und 1 h gerührt. Resultate in *Tab.7*.

3.8. Variation des Katalysators. Methode A, mit 200 mg (0,73 mmol) 1f, je 0,1 mol-equiv. (bzw. 1f) H₂O-freiem CuCl₂, CuBr₂, CuF₂, CuCl, CuBr oder Cu1 und 2,5 ml THF. Innerhalb von 10 min wird mit 0,46 ml (0,73 mmol) BuLi (1,6м in Hexan) versetzt und 1 h gerührt. Resultate in *Tab. 8*.

³¹) Vier Diastereoisomere **11m** laut GC (Abb., vgl. [22]) und NMR-Spektren. Wegen teilweiser Zersetzung im GC kann das Diastereoisomerenverhältnis nicht genau angegeben werden.

³²) Absorptionsbereiche aller vier Stereoisomere.

³³) Weitere spektroskopische Daten fehlen wegen der extremen Schwerlöslichkeit von 11n.

LITERATURVERZEICHNIS

- [1] S. You, M. Gubler, M. Neuenschwander, Helv. Chim. Acta 1994, 77, 1346.
- [2] T. Loosli, Dissertation, Universität Bern, 1992.
- [3] M. Borer, Diplomarbeit, Universität Bern, 1991.
- [4] I. Kulakowska, Diplomarbeit, Universität Bern, 1993.
- [5] A. Minger, Diplomarbeit, Universität Bern, 1992.
- [6] G. Boche, H. M. Walborsky, 'Cyclopropane Derived Reactive Intermediates', Updates from 'The Chemistry of Functional Groups', Eds. S. Patai und Z. Rappoport, John Wiley, Chichester, 1990.
- [7] G. Köbrich, Angew. Chem. 1972, 84, 557; ibid. Int. Ed. 1972, 11, 473.
- [8] A. Schmidt, G. Köbrich, R. W. Hoffmann, Chem. Ber. 1991, 124, 1253.
- [9] K. Kitatani, T. Hijama, H. Nozaki, J. Am. Chem. Soc. 1975, 97, 949; K. Kitatani, T. Hijama, H. Nozaki, Bull. Chem. Soc. Jpn. 1977, 50, 3288; T. Hijama, A. Kanakura, H. Yamamoto, H. Nozaki, Tetrahedron Lett. 1978, 33, 3047.
- [10] D. Seyferth, R. L. Lambert, J. Organomet. Chem. 1973, 55, C53; D. Seyferth, R. L. Lambert, M. Massol, ibid. 1975, 88, 255.
- [11] A. Schmidt, G. Köbrich, Tetrahedron Lett. 1974, 2561; M. Braun, R. Dammann, D. Seebach, Chem. Ber. 1975, 108, 2368.
- [12] W. Kirmse, 'Carbene Chemistry', Academic Press, New York, 1971; M. Jones, R.A. Moss, 'Reactive Intermediates', Wiley, New York, 1981, Vol.2, p.113–119; P.D. Landor, in 'The Chemistry of Allenes', Ed. S. R. Landor, Academic Press, New York, 1982, Vol. 1.
- [13] L. Skatteböl, Tetrahedron Lett. 1961, 167; Acta Chem. Scand. 1963, 17, 1683.
- [14] E. M. Marquís, P. D. Gardner, J. Chem. Soc., Chem. Commun. 1966, 726.
- [15] W. R. Moore, R. D. Bach, J. Am. Chem. Soc. 1972, 94, 3148.
- [16] G. Pilildis, Collect. Czech. Chem. Commun. 1986, 51, 2151.
- [17] K. G. Taylor, J. Chaney, J. C. Deck, J. Am. Chem. Soc. 1976, 98, 4163.
- [18] R. Neidlein, V. Poignée, W. Kramer, C. Glück, Angew. Chem. 1986, 98, 735.
- [19] W. Rutsch, A. Escher, M. Neuenschwander, Chimia 1983, 37, 160; A. Escher, W. Rutsch, M. Neuenschwander, Helv. Chim. Acta 1986, 69, 644.
- [20] A. Escher, M. Neuenschwander, Angew. Chem. 1984, 96, 983; ibid. Int. Ed. 1984, 23, 973; Helv. Chim. Acta 1987, 70, 49; A. Escher, M. Neuenschwander, P. Engel, ibid. 1987, 70, 1623.
- [21] A. de Meijere, S. I. Kozhushkov, T. Spaeth, N. S. Zefirov, J. Org. Chem. 1993, 58, 502.
- [22] M. Borer, T. Loosli, M. Neuenschwander, Chimia 1991, 45, 382.
- [23] M. Mühlebach, M. Neuenschwander, Chimia 1992, 46, 382; M. Mühlebach, Dissertation, Universität Bern, 1992.
- [24] W. von E. Doering, W. A. Henderson, J. Am. Chem. Soc. 1958, 80, 5274; G. L. Closs, L. E. Closs, *ibid.* 1959, 81, 4996.
- [25] M. Makosza, A. Kacprowicz, M. Fedorynski, Tetrahedron Lett. 1975, 2119.
- [26] D. Seyferth, J. M. Burlitch, R. J. Minasz, J. Y.-P. Mui, H. D. Simmons, A.J. H. Treiber, S. R. Dowd, J. Am. Chem. Soc. 1965, 87, 4259.
- [27] G. Köbrich, H. Trapp, Chem. Ber. 1966, 99, 670.
- [28] R. J. Bushby, M. D. Pollard, Tetrahedron Lett. 1977, 3671; ibid. 1978, 3851.
- [29] J.-M. Conia, A. H. Schmidt, U. Schirmer, J. Chem. Soc., Perkin Trans. 1 1982, 2647.
- [30] R. Kollish, W.H. Pirkle, J. Am. Chem. Soc. 1967, 89, 2781.
- [31] P. Engel, C. Läng, M. Mühlebach, M. Neuenschwander, Chimia 1992, 46, 380; C. Läng, Diplomarbeit, Universität Bern, 1991.
- [32] D. Seebach, R. Hässig, J. Gabriel, Helv. Chim. Acta 1983, 66, 308.
- [33] M. Mühlebach, M. Neuenschwander, P. Engel, Helv. Chim. Acta 1993, 76, 2089; M. Mühlebach, Dissertation, Universität Bern, 1992.
- [34] P. Engel, Acta Crystallogr., Sect. A 1978, 34/5, 348.
- [35] W. von E. Doering, A. K. Hoffmann, J. Am. Chem. Soc. 1954, 76, 6162.
- [36] W. von E. Doering, W. A. Henderson, Jr., J. Am. Chem. Soc. 1958, 80, 5274.
- [37] M. Makosza, in 'Modern Synthetic Methods 1976', Ed. R. Scheffold, Schweiz. Chemiker-Verband, 1976; M. Makosza, A. Kacprowicz, M. Fedorinski, *Tetrahedron Lett.* 1975, 2119.
- [38] T. Ando, T. Muranaka, T. Ishihara, Bull. Chem. Soc. Jpn. 1981, 54, 3227.